首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   9篇
  2022年   1篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   3篇
  2014年   9篇
  2013年   4篇
  2012年   12篇
  2011年   13篇
  2010年   6篇
  2009年   4篇
  2008年   11篇
  2007年   10篇
  2006年   9篇
  2005年   1篇
  2004年   5篇
  2003年   4篇
  2002年   9篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1998年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
81.
Liquid chromatography mass spectrometry has become one of the analytical platforms of choice for metabolomics studies. However, LC-MS metabolomics data can suffer from the effects of various systematic biases. These include batch effects, day-to-day variations in instrument performance, signal intensity loss due to time-dependent effects of the LC column performance, accumulation of contaminants in the MS ion source and MS sensitivity among others. In this study we aimed to test a singular value decomposition-based method, called EigenMS, for normalization of metabolomics data. We analyzed a clinical human dataset where LC-MS serum metabolomics data and physiological measurements were collected from thirty nine healthy subjects and forty with type 2 diabetes and applied EigenMS to detect and correct for any systematic bias. EigenMS works in several stages. First, EigenMS preserves the treatment group differences in the metabolomics data by estimating treatment effects with an ANOVA model (multiple fixed effects can be estimated). Singular value decomposition of the residuals matrix is then used to determine bias trends in the data. The number of bias trends is then estimated via a permutation test and the effects of the bias trends are eliminated. EigenMS removed bias of unknown complexity from the LC-MS metabolomics data, allowing for increased sensitivity in differential analysis. Moreover, normalized samples better correlated with both other normalized samples and corresponding physiological data, such as blood glucose level, glycated haemoglobin, exercise central augmentation pressure normalized to heart rate of 75, and total cholesterol. We were able to report 2578 discriminatory metabolite peaks in the normalized data (p<0.05) as compared to only 1840 metabolite signals in the raw data. Our results support the use of singular value decomposition-based normalization for metabolomics data.  相似文献   
82.
Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the ''visual memory'' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types.  相似文献   
83.
The role of the leaf apoplast in iron (Fe) uptake into the leaf symplast is insufficiently understood, particularly in relation to the supposed inactivation of Fe in leaves caused by elevated bicarbonate in calcareous soils. It has been supposed that high bicarbonate supply to roots increases the pH of the leaf apoplast which decreases the physiological availability of Fe in leaf tissues. The study reported here has been carried out with sunflower plants grown in nutrient solution and with grapevine plants grown on calcareous soil under field conditions. The data obtained clearly show that the pH of the leaf apoplastic fluid was not affected by high bicarbonate supply in the root medium (nutrient solution and field experiments). The concentrations of total, symplastic and apoplastic Fe were decreased in chlorotic leaves of both sunflower (nutrient solution experiment) and grapevine plants in which leaf expansion was slightly inhibited (field experiment). However, in grapevine showing severe inhibition of leaf growth, total Fe concentration in chlorotic leaves was the same or even higher than in green ones, indicative to the so-called `chlorosis paradox'. The findings do not support the hypothesis of Fe inactivation in the leaf apoplast as the cause of Fe deficiency chlorosis since no increase was found in the relative amount of apoplastic Fe (% of total leaf Fe) either in the leaves of sunflower or grapevine plants. It is concluded that high bicarbonate concentration in the soil solution does not decrease Fe availability in the leaf apoplast.  相似文献   
84.
85.
Incubation of 1-phenylcyclopropylamine with bovine liver MAO (MAO B), followed by complete enzymatic digestion to single amino acid residues and subsequent analysis by on-line liquid chromatography-electrospray ionization mass spectrometry, was used to investigate the resulting flavin adduct structure.  相似文献   
86.
Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology   总被引:7,自引:0,他引:7  
The small GTPase Rac and its effectors, the Pak1 and p35/Cdk5 kinases, have been assigned important roles in regulating cytoskeletal dynamics in neurons. Our previous work revealed that the neuronal p35/Cdk5 kinase associates with Pak1 in a RacGTP-dependent manner, causing hyperphosphorylation and down-regulation of Pak1 kinase activity. We have now demonstrated direct phosphorylation of Pak1 on threonine 212 by the p35/Cdk5 kinase. In neuronal growth cones, Pak1 phosphorylated on Thr-212 localized to actin and tubulin-rich areas, suggesting a role in regulating growth cone dynamics. The expression of a non-phosphorylatable Pak1 mutant (Pak1A212) induced dramatic neurite disorganization. We also observed a strong association between p35/Cdk5 and the Pak1 C-terminal kinase domain. Overall, our data show that in neurons, membrane-associated, active Pak1 is regulated by the p35/Cdk5 kinase both by association and phosphorylation, which is essential for the proper regulation of the cytoskeleton during neurite outgrowth and remodeling.  相似文献   
87.
88.
89.
90.

This study investigated different dietary strategies, high-fat (HFd), or standard diet (Sd) alone or in combination with standardized Aronia melanocarpa extract (SAE), as a polyphenol-rich diet, and their effects on lipids and fatty acids (FA) in rats with metabolic syndrome (MetS). Wistar albino rats were randomly divided into two groups: healthy and rats with MetS, and then depending on dietary patterns on six groups: healthy rats fed with Sd, healthy rats fed with Sd and SAE, rats with MetS fed with HFd, rats with MetS fed with HFd and SAE, rats with MetS fed with Sd, and rats with MetS fed with Sd and SAE. 4 weeks later, after an overnight fast (12–14 h), blood for determination of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), index of lipid peroxidation (measured as TBARS), and FA was collected. Increased FA and lipid concentration found in MetS rats were reduced when changing dietary habits from HFd to Sd with or without SAE consumption. Consumption of SAE slightly affects the FA profiles, mostly palmitoleic acid in healthy rats and PUFA in MetS?+?HFd rats. Nevertheless, in a high-fat diet, SAE supplementation significantly decreases n-6/n-3 ratio, thereby decreasing systemic inflammation. Further researches are warranted to confirm these effects in humans.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号