首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   816篇
  免费   72篇
  2023年   4篇
  2022年   4篇
  2021年   8篇
  2020年   11篇
  2019年   6篇
  2018年   10篇
  2017年   4篇
  2016年   10篇
  2015年   29篇
  2014年   36篇
  2013年   38篇
  2012年   71篇
  2011年   69篇
  2010年   37篇
  2009年   32篇
  2008年   51篇
  2007年   63篇
  2006年   50篇
  2005年   54篇
  2004年   50篇
  2003年   36篇
  2002年   39篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1998年   11篇
  1996年   9篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   11篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   6篇
  1985年   8篇
  1984年   13篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   10篇
  1978年   4篇
  1977年   3篇
  1976年   6篇
  1974年   4篇
  1969年   3篇
  1968年   3篇
  1967年   2篇
  1862年   3篇
排序方式: 共有888条查询结果,搜索用时 296 毫秒
111.
The mitochondrial inner membrane contains two non-bilayer‐forming phospholipids, phosphatidylethanolamine (PE) and cardiolipin (CL). Lack of CL leads to destabilization of respiratory chain supercomplexes, a reduced activity of cytochrome c oxidase, and a reduced inner membrane potential Δψ. Although PE is more abundant than CL in the mitochondrial inner membrane, its role in biogenesis and assembly of inner membrane complexes is unknown. We report that similar to the lack of CL, PE depletion resulted in a decrease of Δψ and thus in an impaired import of preproteins into and across the inner membrane. The respiratory capacity and in particular the activity of cytochrome c oxidase were impaired in PE-depleted mitochondria, leading to the decrease of Δψ. In contrast to depletion of CL, depletion of PE did not destabilize respiratory chain supercomplexes but favored the formation of larger supercomplexes (megacomplexes) between the cytochrome bc1 complex and the cytochrome c oxidase. We conclude that both PE and CL are required for a full activity of the mitochondrial respiratory chain and the efficient generation of the inner membrane potential. The mechanisms, however, are different since these non-bilayer‐forming phospholipids exert opposite effects on the stability of respiratory chain supercomplexes.  相似文献   
112.
113.
114.
The insects with the longest proboscis in relation to body length are the nectar‐feeding Nemestrinidae. These flies represent important pollinators of the South African flora and feature adaptations to particularly long‐tubed flowers. The present study examined the morphology of the extremely long and slender mouthparts of Nemestrinidae for the first time. The heavily sclerotized tubular proboscis of flies from the genus Prosoeca is highly variable in length. It measures 20–47 mm in length and may exceed double the body length in some individuals. Proximally, the proboscis consists of the labrum–epipharynx unit, the laciniae, the hypopharynx, and the labium. The distal half is composed of the prementum of the labium, which solely forms the food tube. In adaptation to long‐tubed and narrow flowers, the prementum is extremely elongated, bearing the short apical labella that appear only to be able to spread apart slightly during nectar uptake. Moving the proboscis from resting position under the body to a vertical feeding position is accomplished in particular by the movements of the laciniae, which function as a lever arm. Comparisons with the mouthparts of other flower visiting flies provide insights into adaptations to nectar‐feeding from long‐tubed flowers. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   
115.
116.
In-vivo whole brain mapping of the radio frequency transmit field B(1) (+) is a key aspect of recent method developments in ultra high field MRI. We present an optimized method for fast and robust in-vivo whole-brain B(1) (+) mapping at 7T. The method is based on the acquisition of stimulated and spin echo 3D EPI images and was originally developed at 3T. We further optimized the method for use at 7T. Our optimization significantly improved the robustness of the method against large B(1) (+) deviations and off-resonance effects present at 7T. The mean accuracy and precision of the optimized method across the brain was high with a bias less than 2.6 percent unit (p.u.) and random error less than 0.7 p.u. respectively.  相似文献   
117.
The main physiological function of adipose-derived stromal/progenitor cells (ASC) is to differentiate into adipocytes. ASC are most likely localized at perivascular sites in adipose tissues and retain the capacity to differentiate into multiple cell types. Although cell surface markers for ASC have been described, there is no complete consensus on the antigen expression pattern that will precisely define these cells. DLK1(PREF1) is an established marker for mouse adipocyte progenitors which inhibits adipogenesis. This suggests that DLK1(PREF1) could be a useful marker to characterize human ASC. The DLK1(PREF1) status of human ASC is however unknown. In the present study we isolated ASC from the heterogeneous stromal vascular fraction of subcutaneous abdominal fat pats of adult women. These cells were selected by their plastic adherence and expanded to passage 5. The ASC were characterized as relatively homogenous cell population with the capacity to differentiate in vitro into adipocytes, chondrocytes, and osteoblasts and the immunophenotype CD105?/CD90?/CD34?/CD31?/FABP4?. The ASC were positive for DLK1(PREF1) which was well expressed in proliferating and density arrested cells but downregulated in the course of adipogenic differentiation. To investigate whether DLK1(PREF1) plays a role in the regulation of adipogenesis in these cells RNAi-mediated knockdown experiments were conducted. Knockdown of DLK1(PREF1) in differentiating ASC resulted in a significant increase of the expression of the adipogenic key regulator PPARγ2 and of the terminal adipogenic differentiation marker FABP4. We conclude that DLK1(PREF1) is well expressed in human ASC and acts as a negative regulator of adipogenesis. Moreover, DLK1(PREF1) could be a functional marker contributing to the characterization of human ASC.  相似文献   
118.
119.
120.
The contrast observed in images of frozen-hydrated biological specimens prepared for electron cryo-microscopy falls significantly short of theoretical predictions. In addition to limits imposed by the current instrumentation, it is widely acknowledged that motion of the specimen during its exposure to the electron beam leads to significant blurring in the recorded images. We have studied the amount and direction of motion of virus particles suspended in thin vitrified ice layers across holes in perforated carbon films using exposure series. Our data show that the particle motion is correlated within patches of 0.3-0.5 μm, indicating that the whole ice layer is moving in a drum-like motion, with accompanying particle rotations of up to a few degrees. Support films with smaller holes, as well as lower electron dose rates tend to reduce beam-induced specimen motion, consistent with a mechanical effect. Finally, analysis of movies showing changes in the specimen during beam exposure show that the specimen moves significantly more at the start of an exposure than towards its end. We show how alignment and averaging of movie frames can be used to restore high-resolution detail in images affected by beam-induced motion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号