首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   842篇
  免费   83篇
  2023年   4篇
  2022年   3篇
  2021年   8篇
  2020年   10篇
  2019年   6篇
  2018年   9篇
  2017年   5篇
  2016年   12篇
  2015年   30篇
  2014年   35篇
  2013年   40篇
  2012年   70篇
  2011年   69篇
  2010年   36篇
  2009年   33篇
  2008年   56篇
  2007年   63篇
  2006年   52篇
  2005年   55篇
  2004年   51篇
  2003年   33篇
  2002年   39篇
  2001年   11篇
  2000年   10篇
  1999年   12篇
  1998年   11篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   7篇
  1992年   13篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   11篇
  1984年   15篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1980年   8篇
  1979年   13篇
  1978年   4篇
  1977年   4篇
  1976年   6篇
  1975年   2篇
  1974年   4篇
  1862年   3篇
排序方式: 共有925条查询结果,搜索用时 31 毫秒
31.
32.
Objective: We investigated occupational risk of multiple myeloma (MM) in a pooled analysis of five international case–control studies. Methods: We calculated the odds ratio and its 95% confidence interval for selected occupations with unconditional regression analysis in 1959 MM cases and 6192 controls, by pooling study-specific risks using random-effects meta-analysis. Exposure to organic solvents was assessed with a job-exposure matrix (JEM). Results: Gardeners and nursery workers combined, most likely exposed to pesticides, showed a 50% increase in risk (OR = 1.50, 95% CI 0.9–2.3), while other farming jobs did not. Metal processors (OR = 1.55, 95% CI 0.9–2.3), female cleaners (OR = 1.32, 95% CI 1.0–1.8), and high level exposure to organic solvents (OR = 1.38, 95% CI 0.96–1.8) also showed moderately increased risks. Conclusions: Additional case–control studies of MM aetiology are warranted to further investigate the nature of the repeatedly reported increase in MM risk in several occupational groups.  相似文献   
33.
34.
Continuous virus inactivation (VI) remains one of the missing pieces while the biopharma industry moves toward continuous manufacturing. The challenges of adapting VI to the continuous operation are two‐fold: 1) achieving fluid homogeneity and 2) a narrow residence time distribution (RTD) for fluid incubation. To address these challenges, a dynamic active in‐line mixer and a packed‐bed continuous virus inactivation reactor (CVIR) are implemented, which act as a narrow RTD incubation chamber. The developed concept is applied using solvent/detergent (S/D) treatment for inactivation of two commonly used model viruses. The in‐line mixer is characterized and enables mixing of the viscous S/D chemicals to ±1.0% of the target concentration in a small dead volume. The reactor's RTD is characterized and additional control experiments confirm that the VI is due to the S/D action and not induced by system components. The CVIR setup achieves steady state rapidly before two reactor volumes and the logarithmic reduction values of the continuous inactivation process are identical to those obtained by the traditional batch operation. The packed‐bed reactor for continuous VI unites fully continuous processing with very low‐pressure drop and scalability.  相似文献   
35.
We examined the influence of S-nitrosoglutathione (GSNO) on alpha(IIb)beta(3) integrin-mediated platelet adhesion to immobilised fibrinogen. GSNO induced a time- and concentration-dependent inhibition of platelet adhesion. Inhibition was cGMP-independent and associated with both reduced platelet spreading and protein tyrosine phosphorylation. To investigate the cGMP-independent effects of NO we evaluated integrin beta(3) phosphorylation. Adhesion to fibrinogen induced rapid phosphorylation of beta(3) on tyrosines 773 and 785, which was reduced by GSNO in a cGMP independent manner. Similar results were observed in suspended platelets indicating that NO-induced effects were independent of spreading-induced signalling. This is the first demonstration that NO directly regulates integrin beta(3) phosphorylation.  相似文献   
36.
37.
Mitochondria are crucial for numerous cellular processes, yet the regulation of mitochondrial functions is only understood in part. Recent studies indicated that the number of mitochondrial phosphoproteins is higher than expected; however, the effect of reversible phosphorylation on mitochondrial structure and function has only been defined in a few cases. It is thus crucial to determine authentic protein phosphorylation sites from highly purified mitochondria in a genetically tractable organism. The yeast Saccharomyces cerevisiae is a major model organism for the analysis of mitochondrial functions. We isolated highly pure yeast mitochondria and performed a systematic analysis of phosphorylation sites by a combination of different enrichment strategies and mass spectrometry. We identified 80 phosphorylation sites in 48 different proteins. These mitochondrial phosphoproteins are involved in critical mitochondrial functions, including energy metabolism, protein biogenesis, fatty acid metabolism, metabolite transport, and redox regulation. By combining yeast genetics and in vitro biochemical analysis, we found that phosphorylation of a serine residue in subunit g (Atp20) regulates dimerization of the mitochondrial ATP synthase. The authentic phosphoproteome of yeast mitochondria will represent a rich source to uncover novel roles of reversible protein phosphorylation.  相似文献   
38.
Th1 cytokines promote monocyte differentiation into proatherogenic M1 macrophages, while Th2 cytokines lead to an "alternative" anti-inflammatory M2 macrophage phenotype. Here we show that in human atherosclerotic lesions, the expression of M2 markers and PPARgamma, a nuclear receptor controlling macrophage inflammation, correlate positively. Moreover, PPARgamma activation primes primary human monocytes into M2 differentiation, resulting in a more pronounced anti-inflammatory activity in M1 macrophages. However, PPARgamma activation does not influence M2 marker expression in resting or M1 macrophages, nor does PPARgamma agonist treatment influence the expression of M2 markers in atherosclerotic lesions, indicating that only native monocytes can be primed by PPARgamma activation to an enhanced M2 phenotype. Furthermore, PPARgamma activation significantly increases expression of the M2 marker MR in circulating peripheral blood mononuclear cells. These data demonstrate that PPARgamma activation skews human monocytes toward an anti-inflammatory M2 phenotype.  相似文献   
39.
The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2) is required for systemic infections and intracellular accumulation of Salmonella enterica. This system is induced by intracellular Salmonella and subsequently transfers effector proteins into the host cell. Growth conditions either inducing expression of the type III secretion system or the secretion of substrate proteins were defined. Here we report the identification of a set of substrate proteins consisting of SseB, SseC, and SseD that are secreted by the SPI2 system in vitro. Secretion was observed if bacterial cells were exposed to acidic pH after growth in minimal medium with limitation of Mg(2+) or phosphate. SseB, -C, and -D were isolated in a fraction detached from the bacterial cell surface by mechanical shearing, indicating that these proteins are predominantly assembled into complexes on the bacterial cell surface. The three proteins were required for the translocation of SPI2 effector proteins SspH1 and SspH2 into infected host cells. Thus, SseB, SseC, and SseD function as the translocon for effector proteins by intracellular Salmonella.  相似文献   
40.
A cDNA was isolated and characterized from a tomato shoot cDNA library, the deduced amino acid sequence of which exhibited similarity with yeast Old Yellow Enzymes (OYEs) and related enzymes of bacterial and plant origin. Sequence identity was particularly high with 12-oxophytodienoate 10,11-reductase (OPR) from Arabidopsis thaliana. The cDNA-encoded protein was expressed as a glutathione S-transferase fusion protein in Escherichia coli and was purified from bacterial extracts. The protein was found to be a flavoprotein catalyzing the NADPH-dependent reduction of the olefinic bond of alpha,beta-unsaturated carbonyl compounds, including 12-oxophytodienoic acid. Thus, the tomato enzyme was termed LeOPR. The catalytic efficiency of LeOPR was highest with N-ethylmaleimide followed by 12-oxophytodienoic acid and maleic acid as substrates. Photoreduction of the LeOPR-bound FMN resulted in the formation of a red, anionic semiquinone prior to the formation of the fully reduced flavin dihydroquinone. Spectroscopic characterization of LeOPR revealed the formation of charge transfer complexes upon titration with para-substituted phenolic compounds, a distinctive feature of the enzymes of the OYE family. The ligand binding properties were compared between LeOPR and OYE, and the findings are discussed with respect to structural differences between the active sites of OYE and LeOPR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号