首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   15篇
  2023年   4篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   8篇
  2016年   9篇
  2015年   15篇
  2014年   13篇
  2013年   13篇
  2012年   20篇
  2011年   12篇
  2010年   13篇
  2009年   7篇
  2008年   9篇
  2007年   13篇
  2006年   8篇
  2005年   11篇
  2004年   9篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有221条查询结果,搜索用时 390 毫秒
91.
Lai ZC  Wei X  Shimizu T  Ramos E  Rohrbaugh M  Nikolaidis N  Ho LL  Li Y 《Cell》2005,120(5):675-685
Appropriate cell number and organ size in a multicellular organism are determined by coordinated cell growth, proliferation, and apoptosis. Disruption of these processes can cause cancer. Recent studies have identified the Large tumor suppressor (Lats)/Warts (Wts) protein kinase as a key component of a pathway that controls the coordination between cell proliferation and apoptosis. Here we describe growth inhibitory functions for a Mob superfamily protein, termed Mats (Mob as tumor suppressor), in Drosophila. Loss of Mats function results in increased cell proliferation, defective apoptosis, and induction of tissue overgrowth. We show that mats and wts function in a common pathway. Mats physically associates with Wts to stimulate the catalytic activity of the Wts kinase. A human Mats ortholog (Mats1) can rescue the lethality associated with loss of Mats function in Drosophila. As Mats1 is mutated in human tumors, Mats-mediated growth inhibition and tumor suppression is likely conserved in humans.  相似文献   
92.
Obesity is associated with the development of leptin resistance. However, the effects of leptin resistance on leptin-regulated metabolic processes and the biochemical defects that cause leptin resistance are poorly understood. We have addressed in rats the effect of dietinduced obesity (DIO), a situation of elevated tissue lipid levels, on the well described lipid-lowering effect of leptin in liver, an action that is proposed to be important for the prevention of tissue lipotoxicity and insulin resistance. In addition, we have addressed the role of phosphatidylinositol 3-kinase (PI 3-kinase) in mediating the acute effects of leptin on hepatic lipid levels in lean and DIO animals. A 90-min leptin ( approximately 10 ng/ml) perfusion of isolated livers from lean animals decreased triglyceride levels by 42 +/- 5% (p = 0.006). However, leptin concentrations ranging from approximately 10 to approximately 90 ng/ml had no effect on triglyceride levels in livers from DIO animals. The acute lipid-lowering effect of leptin on livers from lean animals was mediated by a PI 3-kinase-dependent mechanism, because wortmannin and LY294002, the PI 3-kinase inhibitors, blocked the effects of leptin on hepatic triglyceride levels and leptin increased liver PI 3-kinase activity by 183 +/- 6% (p = 0.003) and insulin receptor substrate 1 tyrosine phosphorylation by 185 +/- 30% (p = 0.02) in the absence of PI 3-kinase inhibitors. Contrary to the effects of leptin in lean livers, leptin did not activate PI 3-kinase in livers from DIO rats. These data present evidence for a role for 1). leptin resistance in contributing to the excessive accumulation of tissue lipid in obesity, 2). PI 3-kinase in mediating the acute lipid-lowering effects of leptin in liver, and 3). defective leptin activation of PI 3-kinase as a novel mechanism of leptin resistance.  相似文献   
93.
The absorptive Na(+)-K(+)-Cl(-) cotransporter (NKCC2) is a polytopic protein that forms homooligomeric complexes in the apical membrane of the thick ascending loop of Henle (TAL). It occurs in at least four splice variants (called B, A, F, and AF) that are identical to one another except for a short region in the membrane-associated domain. Although each of these variants exhibits unique functional properties and distributions along the TAL, their teleological purpose and structural organization remain poorly defined. In the current work, we provide additional insight in these regards by showing in mouse that the administration of either furosemide or an H(2)O-rich diet, which are predicted to alter NKCC2 expression in the TAL, exerts differential effects on mRNA levels for the variants, increasing those of A (furosemide) but decreasing those of F and AF (furosemide or H(2)O). Based on a yeast two-hybrid mapping analysis, we also show that the formation of homooligomeric complexes is mediated by two self-interacting domains in the COOH terminus (residues 671 to 816 and 910 to 1098), and that these complexes could probably include more than one type of variant. Taken together, the data reported here suggest that A, F, and AF each play unique roles that are adapted to specific physiological needs, and that the accomplishment of such roles is coordinated through the splicing machinery as well as complex NKCC2-NKCC2 interactions.  相似文献   
94.
Controlling the cellular abundance and proper function of proteins by proteolysis is a universal process in all living organisms. In Escherichia coli, the ATP‐dependent Lon protease is crucial for protein quality control and regulatory processes. To understand how diverse substrates are selected and degraded, unbiased global approaches are needed. We employed a quantitative Super‐SILAC (stable isotope labeling with amino acids in cell culture) mass spectrometry approach and compared the proteomes of a lon mutant and a strain producing the protease to discover Lon‐dependent physiological functions. To identify Lon substrates, we took advantage of a Lon trapping variant, which is able to translocate substrates but unable to degrade them. Lon‐associated proteins were identified by label‐free LC‐MS/MS. The combination of both approaches revealed a total of 14 novel Lon substrates. Besides the identification of known pathways affected by Lon, for example, the superoxide stress response, our cumulative data suggests previously unrecognized fundamental functions of Lon in sulfur assimilation, nucleotide biosynthesis, amino acid and central energy metabolism.  相似文献   
95.
Summary Induction of the primitive streak is correlated with specific qualitative and quantitative changes in protein synthesis in the component areas of chick blastoderm. Blastoderm embryos at the initial to intermediate primitive streak stage were labeled with L-[35S] methionine. Radioactively labeled proteins separated by two-dimensional sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis revealed differences in the number and density of spots among the component areas of the epiblast and hypoblast. Protein patterns of the area opaca, marginal zone and central area of the epiblast are very similar qualitatively but show distinct quantitative differences. A comparison between any of the component areas of the epiblast and the hypoblast in chick blastoderm embryos, however, reveals both qualitative and quantitative differences. A protein with a molecular weight of 30,000 unique to the component areas of the epiblast, and proteins with a molecular weight of 22,000 and 37,000 unique to the hypoblast are prominent and seem to be related to the initial appearance of the primitive streak.  相似文献   
96.
97.
98.
Parasitic helminths are sensed by the immune system via tissue-derived alarmins that promote the initiation of the appropriate type 2 immune responses. Here we establish the nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite burdens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and increased mast cell activation. Using gene-deficient mice, we show that application of IL-33 triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, independent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-driven intestinal anti-helminth immunity.  相似文献   
99.
Seirinae is one of the most diverse subfamilies of Collembola. To date no detailed phylogeny of Seirinae has been proposed, which leads to difficulties in the understanding of evolutionary patterns regarding this taxon. The main aim of this study is to clarify the phylogenetic relationships within the Neotropical Seirinae, by generating and analysing the mitochondrial genomes of 26 terminal taxa of Entomobryidae, and one species of Paronellidae. Specifically, we first generated Illumina HiSeq 2000 shotgun sequence data from each species, then reconstructed the mitochondrial genome of each species using two methods: MitoZ and MIRA/MITOBim. Using these data, we were able to generate a well-supported phylogeny that combined all the above species as well as three publicly available mitogenomes from other species. Bayesian and maximum likelihood methods were applied using all 13 protein coding genes. In this way, monophyly for the internal groups of Seirinae was obtained based on molecular evidence for the first time, as was the potential validity of three main internal taxa of the subfamily. We furthermore validated that Tyrannoseira is a distinct lineage and propose the elevation of Lepidocyrtinus to genus. Lastly, we anticipate that these newly available mitogenomes will serve as a useful dataset for future studies on the evolution of the Collembola and Hexapoda.  相似文献   
100.
An abundant form of DNA damage caused by reactive oxygen species is 8-oxo-7,8-dihydroguanine for which the base excision repair protein 8-oxoguanine-DNA glycosylase 1 (OGG1) is a major repair enzyme. To assess the location and intracellular activity of the OGG1 protein in response to oxidative stress, we have utilised a fluorescence–quench molecular beacon switch containing a 8-oxo-dG:C base pair and a fluorescent and quencher molecule at opposite ends of a hairpin oligonucleotide. Oxidative stress was induced by treatment with potassium bromate. Flow cytometry demonstrated a concentration-dependent increase in the activity of OGG1 that was detected by the fluorescence produced when the oligonucleotide was cleaved in the cells treated with potassium bromate. This signal is highly specific and not detectable in OGG1 knock out cells. Induction of OGG1 activity is not a result of induction of OGG1 gene expression as assessed by qPCR suggesting a role for protein stabilisation or increased OGG1 catalytic activity. High resolution confocal microscopy pinpointed the location of the fluorescent molecular beacon in live cells to perinuclear regions that were identified as mitochondria by co-staining with mitotracker dye. There is no evidence of cut beacon within the nuclear compartment of the cell. Control experiments with a positive control beacon (G:C base pair and lacking the DAB quencher) did not result in mitochondrial localisation of fluorescence signal indicating that the dye does not accumulate in mitochondria independent of OGG1 activity. Furthermore, faint nuclear staining was apparent confirming that the beacon structure is able to enter the nucleus. In conclusion, these data indicate that the mitochondria are the major site for OGG1 repair activity under conditions of oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号