首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   15篇
  2023年   4篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   8篇
  2016年   9篇
  2015年   15篇
  2014年   13篇
  2013年   13篇
  2012年   20篇
  2011年   12篇
  2010年   13篇
  2009年   7篇
  2008年   9篇
  2007年   13篇
  2006年   8篇
  2005年   11篇
  2004年   9篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有221条查询结果,搜索用时 390 毫秒
161.
Adhesion, migration and communication in melanocytes and melanoma   总被引:10,自引:0,他引:10  
Under normal conditions, homeostasis determines whether a cell remains quiescent, proliferates, differentiates, or undergoes apoptosis. In this state of homeostasis, keratinocytes control melanocyte growth and behaviour through a complex system of paracrine growth factors and cell-cell adhesion molecules. Alteration of this delicate homeostatic balance and can lead to altered expression of cell-cell adhesion and cell communication molecules and to the development of melanoma. Melanoma cells escape from this control by keratinocytes through three major mechanisms: (1) down-regulation of receptors important for communication with keratinocytes such as E-cadherin, P-cadherin, desmoglein and connexins, which is achieved through growth factors produced by fibroblasts or keratinocytes; (2) up-regulation of receptors and signalling molecules not found on melanocytes but important for melanoma-melanoma and melanoma-fibroblast interactions such as N-cadherin, Mel-CAM, and zonula occludens protein-1 (ZO-1); (3) loss of anchorage to the basement membrane because of an altered expression of the extracellular-matrix binding integrin family. In the current review, we describe the alterations in cell-cell adhesion and communication associated with melanoma development and progression, and discuss how a greater understanding of these processes may aid the future therapy of this disease.  相似文献   
162.
Two variants of the renal Na(+)-K(+)-Cl(-) cotransporter (NKCC2), called NKCC2A and NKCC2F, display marked differences in Na(+), Rb(+), and Cl(-) affinities, yet are identical to one another except for a 23-residue membrane-associated domain that is derived from alternatively spliced exons. The proximal portion of these exons is predicted to encode the second transmembrane domain (tm2) in the form of an alpha-helix, and the distal portion, part of the following connecting segment (cs1a). In recent studies, we have taken advantage of the A-F differences in kinetic behavior to determine which regions in tm2-cs1a are involved in ion transport. Functional characterizations of chimeras in which tm2 or cs1a were interchanged between the variants showed that both regions are important in specifying ion affinities, but did not allow delineating the contribution of individual residues. Here, we have extended these structure-function analyses by studying additional mutants in which variant residues between A and F were interchanged individually in the tm2-cs1a region (amino acid number 216, 220, 223, 229, or 233 in NKCC2). None of the substitutions were found to affect K(m (C1-)), suggesting that the affinity difference for anion transport is conveyed by a combination of variant residues in this domain. However, 2 substitutions in the tm2 of F were found to affect cation constants specifically; interestingly, one of these mutations (residue 216) only affected K(m (Rb+)) while the other (residue 220) only affected K(m (Na+)). We have thus identified two novel residues in NKCC2 that play a key role in cation transport. Because such residues should be adjacent to one another on the vertical axis of the tm2 alpha-helix, our results imply, furthermore, that the ion transport sites in NKCC2 could be physically linked.  相似文献   
163.
High sucrose (HS) feeding in rats induces hepatic steatosis and plasma dyslipidemia. In previous reports (Huang W, Dedousis N, Bhatt BA, O'Doherty RM. J Biol Chem 279: 21695-21700, 2004; and Huang W, Dedousis N, Bandi A, Lopaschuk GD, O'Doherty RM. Endocrinology 147: 1480-1487, 2006), our laboratory demonstrated a rapid ( approximately 100 min) leptin-induced decrease in liver and plasma VLDL triglycerides (TG) in lean rats, effects that were abolished in obese rats fed a high-fat diet, a model that also presents with hepatic steatosis and plasma dyslipidemia. To further examine the capacity of acute leptin treatment to improve metabolic abnormalities induced by nutrient excess, hepatic leptin action was studied in rats after 5 wk of HS feeding. HS feeding induced hepatic steatosis (TG+80+/-8%; P=0.001), plasma hyperlipidemia (VLDL-TG+102+/-14%; P=0.001), hyperinsulinemia (plasma insulin +67+/-12%; P=0.04), and insulin resistance as measured by homeostasis model assessment (+125+/-20%; P=0.02), without increases in adiposity or plasma leptin concentration compared with standard chow-fed controls. A 120-min infusion of leptin (plasma leptin 13.6+/-0.7 ng/ml) corrected hepatic steatosis (liver TG-29+/-3%; P=0.003) and plasma hyperlipidemia in HS (VLDL-TG-42+/-4%; P=0.001) and increased plasma ketones (+45+/-3%; P=0.006), without altering plasma glucose, insulin, or homeostasis model assessment compared with saline-infused HS controls. In addition, leptin activated liver phosphatidylinositol 3-kinase (+70+/-18%; P=0.01) and protein kinase B (Akt; +90+/-29%; P=0.02), and inhibited acetyl-CoA carboxylase (40+/-7%; P=0.04) in HS, further demonstrating that hepatic leptin action was intact in these animals. We conclude that 1) leptin action on hepatic lipid metabolism remains intact in HS-fed rats, 2) leptin rapidly reverses hepatic steatosis and plasma dyslipidemia induced by sucrose, and 3) the preservation of hepatic leptin action after a HS diet is associated with the maintenance of low adiposity and plasma leptin concentrations.  相似文献   
164.
An increasing percentage of college students report being affected by ADHD behaviors, and this population is at increased risk of experiencing negative consequences associated with alcohol consumption. However, specific factors motivating alcohol consumption and contributing to negative outcomes among these individuals are not well understood. Recent work suggests alcohol expectancies may interact with ADHD behaviors to influence negative drinking-related outcomes among those with elevated inattention and/or hyperactivity-impulsivity. Seven-hundred-forty emerging adults (M age = 19.13 [SD = 2.25] years; 72.1% female; 85.8% Caucasian) enrolled in two public universities in the Southeast and Midwest USA completed the Brief Comprehensive Effects of Alcohol Survey (B-CEOA) and provided self-reports of ADHD symptoms and drinking-related outcomes. Multiple mediation analyses were conducted to evaluate effects of ADHD behaviors (i.e., hyperactivity-impulsivity, and inattention) and related impairment in major life domains (e.g., social interactions, occupational and educational activities, fulfillment of daily responsibilities) on drinking-related outcomes via positive and negative alcohol expectancies, controlling for sex, age, co-occurring oppositional behaviors, and data collection site. Inattention, hyperactivity-impulsivity, and impairment directly predicted both personal and social problems consequent to alcohol use. Effects of ADHD behaviors and impairment on drinking-related personal and social problems were partially mediated by positive expectancies. Findings are consistent with and extend prior work supporting a role of positive alcohol expectancies in alcohol-related negative outcomes among college students experiencing mild to moderate symptoms of ADHD.  相似文献   
165.
166.
The reach of artificial light at night (ALAN) is growing rapidly around the globe, including the increasing use of energy‐efficient LED lights. Many studies document the physiological costs of light at night, but far fewer have focused on the potential benefits for nocturnal insectivores and the likely ecological consequences of shifts in predator–prey relationships. We investigated the effects of ALAN on the foraging behaviour and prey capture success in juvenile Australian garden orb‐web spiders (Eriophora biapicata). Laboratory experiments demonstrated that juvenile spiders were attracted to LED lights when choosing foraging sites, but prey availability was a stronger cue for remaining in a foraging site. Field experiments revealed a significant increase in prey capture rates for webs placed near LED lights. This suggests that any physiological costs of light at night may be offset by the foraging benefits, perhaps partially explaining recently observed increases in the size, fecundity and abundance of some orb‐web spider species in urban environments. Our results highlight the potential long‐term consequences of night lighting in urban ecosystems, through the impact of orb‐web spiders on insect populations.  相似文献   
167.
The obligate intracellular parasite Toxoplasma gondii, a member of the phylum Apicomplexa that includes Plasmodium spp., is one of the most widespread parasites and the causative agent of toxoplasmosis. Micronemal proteins (MICs) are released onto the parasite surface just before invasion of host cells and play important roles in host cell recognition, attachment and penetration. Here, we report the atomic structure for a key MIC, TgMIC1, and reveal a novel cell-binding motif called the microneme adhesive repeat (MAR). Using glycoarray analyses, we identified a novel interaction with sialylated oligosaccharides that resolves several prevailing misconceptions concerning TgMIC1. Structural studies of various complexes between TgMIC1 and sialylated oligosaccharides provide high-resolution insights into the recognition of sialylated oligosaccharides by a parasite surface protein. We observe that MAR domains exist in tandem repeats, which provide a highly specialized structure for glycan discrimination. Our work uncovers new features of parasite-receptor interactions at the early stages of host cell invasion, which will assist the design of new therapeutic strategies.  相似文献   
168.
169.
The unsatisfactory performance of low‐bandgap mixed tin (Sn)–lead (Pb) halide perovskite subcells has been one of the major obstacles hindering the progress of the power conversion efficiencies (PCEs) of all‐perovskite tandem solar cells. By analyzing dark‐current density and distribution, it is identified that charge recombination at grain boundaries is a key factor limiting the performance of low‐bandgap mixed Sn–Pb halide perovskite subcells. It is further found that bromine (Br) incorporation can effectively passivate grain boundaries and lower the dark current density by two–three orders of magnitude. By optimizing the Br concentration, low‐bandgap (1.272 eV) mixed Sn–Pb halide perovskite solar cells are fabricated with open‐circuit voltage deficits as low as 0.384 V and fill factors as high as 75%. The best‐performing device demonstrates a PCE of >19%. The results suggest an important direction for improving the performance of low‐bandgap mixed Sn–Pb halide perovskite solar cells.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号