首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   15篇
  235篇
  2023年   4篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   6篇
  2018年   11篇
  2017年   8篇
  2016年   9篇
  2015年   15篇
  2014年   13篇
  2013年   13篇
  2012年   23篇
  2011年   14篇
  2010年   13篇
  2009年   8篇
  2008年   9篇
  2007年   14篇
  2006年   9篇
  2005年   11篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1949年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
91.
92.
Epidemiological data suggest that previous infections can alter an individual's susceptibility to unrelated diseases. Nevertheless, the underlying mechanisms are not completely understood. Substantial research efforts have expanded the classical concept of immune memory to also include long‐lasting changes in innate immunity and antigen‐independent reactivation of adaptive immunity. Collectively, these processes provide possible explanations on how acute infections might induce long‐term changes that also affect immunity to unrelated diseases. Here, we review lasting changes the immune compartment undergoes upon infection and how infection experience alters the responsiveness of immune cells towards universal signals. This heightened state of alert enhances the ability of the immune system to combat even unrelated infections but may also increase susceptibility to autoimmunity. At the same time, infection‐induced changes in the regulatory compartment may dampen subsequent immune responses and promote pathogen persistence. The concepts presented here outline how infection‐induced changes in the immune system may affect human health.  相似文献   
93.
Existing evidence points out that the biological activity of beta-Ala-Tyr may in part related to its interactions with the cell membranes. For comparative reasons the effects of Glu were also examined using identical techniques and conditions. In order to examine their thermal and dynamic effects on membrane bilayers a combination of DSC, Raman and solid state NMR spectroscopy on DPPC/water model membranes were applied and the results were compared. DSC data showed that Glu perturbs to a greater degree the model membrane compared to beta-Ala-Tyr. Thus, alteration of the phase transition temperature and half width of the peaks, abolishment of the pretransition and influence on the enthalpy of the phase transition were more pronounced in the Glu loaded bilayers. Raman spectroscopy showed that incorporation of Glu in DPPC/water bilayers increased the order in the bilayers in contrast to the effect of the dipeptide. Several structural and dynamical properties of the DPPC multilamellar bilayers with and without the dipeptide or Glu were compared using high resolution C-13 MAS (Magic Angle Spinning) spectra and spectral simulations of inhomogeneously broadened, stationary P-31 NMR lineshapes measured under CP (Cross-polarization) conditions. These methods revealed that the aminoacid Glu binds in the close realm of the phosphate in the hydrophilic headgroup of DPPC while beta-Ala-Tyr is located more deeply inside the hydrophobic zone of the bilayer. The P-31 NMR simulations indicated restricted fast rotary motion of the phospholipids about their long axes in the organized bilayer structure. Finally, by the applied methodologies it is concluded that the two molecules under study exert dissimilar thermal and dynamic effects on lipid bilayers, the Glu improving significantly the packing of the lipids in contrast to the smaller and opposite effect of the dipeptide.  相似文献   
94.
Host cell invasion by the Apicomplexa critically relies on regulated secretion of transmembrane micronemal proteins (TM‐MICs). Toxoplasma gondii possesses functionally non‐redundant MIC complexes that participate in gliding motility, host cell attachment, moving junction formation, rhoptry secretion and invasion. The TM‐MICs are released onto the parasite's surface as complexes capable of interacting with host cell receptors. Additionally, TgMIC2 simultaneously connects to the actomyosin system via binding to aldolase. During invasion these adhesive complexes are shed from the surface notably via intramembrane cleavage of the TM‐MICs by a rhomboid protease. Some TM‐MICs act as escorters and assure trafficking of the complexes to the micronemes. We have investigated the properties of TgMIC6, TgMIC8, TgMIC8.2, TgAMA1 and the new micronemal protein TgMIC16 with respect to interaction with aldolase, susceptibility to rhomboid cleavage and presence of trafficking signals. We conclude that several TM‐MICs lack targeting information within their C‐terminal domains, indicating that trafficking depends on yet unidentified proteins interacting with their ectodomains. Most TM‐MICs serve as substrates for a rhomboid protease and some of them are able to bind to aldolase. We also show that the residues responsible for binding to aldolase are essential for TgAMA1 but dispensable for TgMIC6 function during invasion.  相似文献   
95.
Doxorubicin (DOX) is a potent anticancer drug, which can have unwanted side-effects such as cardiac and kidney toxicity. A detailed investigation was undertaken of the acute cytotoxic mechanisms of DOX on kidney cells, using Cos-7 cells as kidney cell model. Cos-7 cells were exposed to DOX for a period of 24 h over a range of concentrations, and the LC50 was determined to be 7 µM. Further investigations showed that cell death was mainly via apoptosis involving Ca2+ and caspase 9, in addition to autophagy. Regucalcin (RGN), a cytoprotective protein found mainly in liver and kidney tissues, was overexpressed in Cos-7 cells and shown to protect against DOX-induced cell death. Subcellular localization studies in Cos-7 cells showed RGN to be strongly correlated with the nucleus. However, upon treatment with DOX for 4 h, which induced membrane blebbing in some cells, the localization appeared to be correlated more with the mitochondria in these cells. It is yet to be determined whether this translocation is part of the cytoprotective mechanism or a consequence of chemically induced cell stress.  相似文献   
96.
ABL tyrosine kinase inhibitors (TKI) like Imatinib, Dasatinib and Nilotinib are the gold standard in conventional treatment of CML. However, the emergence of resistance remains a major problem. Alternative therapeutic strategies of ABL TKI-resistant CML are urgently needed. We asked whether dual inhibition of BCR-ABL and Aurora kinases A-C could overcome resistance mediated by ABL kinase mutations. We therefore tested the dual ABL and Aurora kinase inhibitors PHA-739358 and R763/AS703569 in Ba/F3- cells ectopically expressing wild type (wt) or TKI-resistant BCR-ABL mutants. We show that both compounds exhibited strong anti-proliferative and pro-apoptotic activity in ABL TKI resistant cell lines including cells expressing the strongly resistant T315I mutation. Cell cycle analysis indicated polyploidisation, a consequence of continued cell cycle progression in the absence of cell division by Aurora kinase inhibition. Experiments using drug resistant variants of Aurora B indicated that PHA-739358 acts on both, BCR-ABL and Aurora Kinase B, whereas Aurora kinase B inhibition might be sufficient for the anti-proliferative activity observed with R763/AS703569. Taken together, our data demonstrate that dual ABL and Aurora kinase inhibition might be used to overcome ABL TKI resistant CML.  相似文献   
97.
The application of biochar as a soil amendment to improve soil fertility has been suggested as a tool to reduce soil‐borne CO2 and non‐CO2 greenhouse gas emissions, especially nitrous oxide (N2O). Both laboratory and field trials have demonstrated N2O emission reduction by biochar amendment, but the long‐term effect (>1 year) has been questioned. Here, we present results of a combined microcosm and field study using a powdered beech wood biochar from slow pyrolysis. The field experiment showed that both CO2 and N2O emissions were still effectively reduced by biochar in the third year after application. However, biochar did not influence the biomass yield of sunflower for biogas production (Helianthus annuus L.). Biochar reduced bulk density and increased soil aeration and thus reduced the water‐filled pore space (WFPS) in the field, but was also able to suppress N2O emission in the microcosms experiment conducted at constant WFPS. For both experiments, biochar had limited impact on soil mineral nitrogen speciation, but it reduced the accumulation of nitrite in the microcosms. Extraction of soil DNA and quantification of functional marker genes by quantitative polymerase chain reaction showed that biochar did not alter the abundance of nitrogen‐transforming bacteria and archaea in both field and microcosm experiments. In contradiction to previous experiments, this study demonstrates the long‐term N2O emission suppression potential of a wood biochar and thus highlights its overall climate change mitigation potential. While a detailed understanding of the underlying mechanisms requires further research, we provide evidence for a range of biochar‐induced changes to the soil environment and their change with time that might explain the often observed N2O emission suppression.  相似文献   
98.
A collection of compounds, structurally related to the anticancer drug tamoxifen, used in breast cancer therapy, were designed and synthesized as potential anticancer agents. McMurry coupling reaction was used as the key synthetic step in the preparation of these analogues and the structural assignment of E, Z isomers was determined on the basis of 2D-NOESY experiments. The compounds were evaluated for their antiproliferative activity on breast cancer (MCF-7), cervix adenocarcinoma (HeLa) and biphasic mesothelioma (MSTO-211H) human tumor cell lines. The estrogen like properties of the novel compounds were compared with those of the untreated controls using an estrogen responsive element-based (ERE) luciferase reporter assay and compared to 17β-estradiol (E2). Finally, with the aim to correlate the antiproliferative activity with an intracellular target(s), the effect on relaxation activity of DNA topoisomerases I and II was assayed.  相似文献   
99.
Pyrogenic carbon capture and storage   总被引:1,自引:0,他引:1  
The growth of biomass is considered the most efficient method currently available to extract carbon dioxide from the atmosphere. However, biomass carbon is easily degraded by microorganisms releasing it in the form of greenhouse gases back to the atmosphere. If biomass is pyrolyzed, the organic carbon is converted into solid (biochar), liquid (bio‐oil), and gaseous (permanent pyrogas) carbonaceous products. During the last decade, biochar has been discussed as a promising option to improve soil fertility and sequester carbon, although the carbon efficiency of the thermal conversion of biomass into biochar is in the range of 30%–50% only. So far, the liquid and gaseous pyrolysis products were mainly considered for combustion, though they can equally be processed into recalcitrant forms suitable for carbon sequestration. In this review, we show that pyrolytic carbon capture and storage (PyCCS) can aspire for carbon sequestration efficiencies of >70%, which is shown to be an important threshold to allow PyCCS to become a relevant negative emission technology. Prolonged residence times of pyrogenic carbon can be generated (a) within the terrestrial biosphere including the agricultural use of biochar; (b) within advanced bio‐based materials as long as they are not oxidized (biochar, bio‐oil); and (c) within suitable geological deposits (bio‐oil and CO2 from permanent pyrogas oxidation). While pathway (c) would need major carbon taxes or similar governmental incentives to become a realistic option, pathways (a) and (b) create added economic value and could at least partly be implemented without other financial incentives. Pyrolysis technology is already well established, biochar sequestration and bio‐oil sequestration in soils, respectively biomaterials, do not present ecological hazards, and global scale‐up appears feasible within a time frame of 10–30 years. Thus, PyCCS could evolve into a decisive tool for global carbon governance, serving climate change mitigation and the sustainable development goals simultaneously.  相似文献   
100.
Parasitic helminths are sensed by the immune system via tissue-derived alarmins that promote the initiation of the appropriate type 2 immune responses. Here we establish the nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite burdens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and increased mast cell activation. Using gene-deficient mice, we show that application of IL-33 triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, independent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-driven intestinal anti-helminth immunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号