全文获取类型
收费全文 | 570篇 |
免费 | 13篇 |
国内免费 | 1篇 |
专业分类
584篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2022年 | 2篇 |
2021年 | 19篇 |
2020年 | 8篇 |
2019年 | 8篇 |
2018年 | 12篇 |
2017年 | 10篇 |
2016年 | 14篇 |
2015年 | 26篇 |
2014年 | 32篇 |
2013年 | 40篇 |
2012年 | 62篇 |
2011年 | 53篇 |
2010年 | 21篇 |
2009年 | 34篇 |
2008年 | 40篇 |
2007年 | 48篇 |
2006年 | 32篇 |
2005年 | 31篇 |
2004年 | 25篇 |
2003年 | 16篇 |
2002年 | 15篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 6篇 |
1996年 | 2篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 2篇 |
排序方式: 共有584条查询结果,搜索用时 15 毫秒
41.
Aligning proteins based on their structural similarity is a fundamental problem in molecular biology with applications in many settings, including structure classification, database search, function prediction, and assessment of folding prediction methods. Structural alignment can be done via several methods, including contact map overlap (CMO) maximization that aligns proteins in a way that maximizes the number of common residue contacts. In this paper, we develop a reduction-based exact algorithm for the CMO problem. Our approach solves CMO directly rather than after transformation to other combinatorial optimization problems. We exploit the mathematical structure of the problem in order to develop a number of efficient lower bounding, upper bounding, and reduction schemes. Computational experiments demonstrate that our algorithm runs significantly faster than existing exact algorithms and solves some hard CMO instances that were not solved in the past. In addition, the algorithm produces protein clusters that are in excellent agreement with the SCOP classification. An implementation of our algorithm is accessible as an on-line server at http://eudoxus.scs.uiuc.edu/cmos/cmos.html. 相似文献
42.
Aqueous two-phase partition systems (ATPS) have been widely used for the separation of a large variety of biomolecules. In the present report, the application of a polyethylene glycol/phosphate (PEG/phosphate) ATPS for the separation of anti-HIV monoclonal antibodies 2G12 (mAb 2G12) and 4E10 (mAb 4E10) from unclarified transgenic tobacco crude extract was investigated. Optimal conditions that favor opposite phase partitioning of plant debris/mAb as well as high recovery and purification were found to be 13.1% w/w (PEG 1500), 12.5% w/w (phosphate) at pH 5 with a phase ratio of 1.3 and 8.25% w/w unclarified tobacco extract load. Under these conditions, mAb 2G12 and mAb 4E10 were partitioned at the bottom phosphate phase with 85 and 84% yield and 2.4- and 2.1-fold purification, respectively. The proposed ATPS was successfully integrated in an affinity-based purification protocol, using Protein A, yielding antibodies of high purity and yield. In this study, ATPS was shown to be suitable for initial protein recovery and partial purification of mAb from unclarified transgenic tobacco crude extract. 相似文献
43.
Missirlis F Rahlfs S Dimopoulos N Bauer H Becker K Hilliker A Phillips JP Jäckle H 《Biological chemistry》2003,384(3):463-472
Cellular defense systems against reactive oxygen species (ROS) include thioredoxin reductase (TrxR) and glutathione reductase (GR). They generate sulfhydryl-reducing systems which are coupled to antioxidant enzymes, the thioredoxin and glutathione peroxidases (TPx and GPx). The fruit fly Drosophila lacks a functional GR, suggesting that the thioredoxin system is the major source for recycling glutathione. Whole genome in silico analysis identified two non-selenium containing putative GPx genes. We examined the biochemical characteristics of one of these gene products and found that it lacks GPx activity and functions as a TPx. Transgene-dependent overexpression of the newly identified Glutathione peroxidase homolog with thioredoxin peroxidase activity (Gtpx-1) gene increases resistance to experimentally induced oxidative stress, but does not compensate for the loss of catalase, an enzyme which, like GTPx-1, functions to eliminate hydrogen peroxide. The results suggest that GTPx-1 is part of the Drosophila Trx antioxidant defense system but acts in a genetically distinct pathway or in a different cellular compartment than catalase. 相似文献
44.
45.
George V.Z. Dedoussis Nikolaos K. Andrikopoulos 《European journal of cell biology》2001,80(9):608-614
We investigated the effect of intracellular glutathione (GSH) levels on Natural Killer-mediated apoptosis in cisplatin-resistant K562 cells. K562/B6 and K562/C9 are cisplatin-resistant K562 cells less susceptible to lysis by natural killer cells. Cisplatin-resistant K562 cells did not present the apoptotic pattern of DNA fragmentation as it was observed for their maternal counterparts. K562/B6 and K562/C9 cell lines produce 1.6- and 1.9-times more GSH than K562 cells. Treatment of both cell lines with D,L-buthionine-(S,R)-sulfoximine (BSO, a gamma-glutamyl cysteine synthetase inhibitor) decreased GSH levels and augmented cell death induced by NK cells via a necrotic rather than an apoptotic process. Proliferating cell nuclear antigen (PCNA) expression was elevated in cisplatin-resistant K562 subclones, and the reduction of GSH levels after treatment with BSO decreased the expression of PCNA. These results suggest that the GSH level affects the NK cell-mediated cell death of cisplatin-resistant K562 cells by inducing necrosis rather than apoptosis. 相似文献
46.
Bacterial L-asparaginases (L-ASNases) catalyze the conversion of L-asparagine to L-aspartate and ammonia. In the present work, we report the cloning and expression of L-asparaginase from Erwinia chrysanthemi 3937 (ErL-ASNase) in Escherichia coli BL21(DE3)pLysS. The enzyme was purified to homogeneity in a single-step procedure involving cation exchange chromatography on an S-Sepharose FF column. The enzymatic and structural properties of the recombinant enzyme were investigated and the kinetic parameters (K(m), k(cat)) for a number of substrates were determined. In addition, we found that the enzyme can be efficiently immobilized on epoxy-activated Sepharose CL-6B. The immobilized enzyme retains most of its activity (60%) and shows high stability at 4 degrees C. The approach offers the possibility of designing an ErL-ASNase bioreactor that can be operated over a long period of time with high efficiency, which can be used in leukaemia therapy. 相似文献
47.
Nikolaos Venetsaneas Georgia AntonopoulouKaterina Stamatelatou Michael KornarosGerasimos Lyberatos 《Bioresource technology》2009,100(15):3713-3717
This study focuses on the exploitation of cheese whey as a source for hydrogen and methane, in a two-stage continuous process. Mesophilic fermentative hydrogen production from undiluted cheese whey was investigated at a hydraulic retention time (HRT) of 24 h. Alkalinity addition (NaHCO3) or an automatic pH controller were used, to maintain the pH culture at a constant value of 5.2. The hydrogen production rate was 2.9 ± 0.2 L/Lreactor/d, while the yield of hydrogen produced was approximately 0.78 ± 0.05 mol H2/mol glucose consumed, with alkalinity addition, while the respective values when using pH control were 1.9 ± 0.1 L/Lreactor/d and 0.61 ± 0.04 mol H2/mol glucose consumed. The corresponding yields of hydrogen produced were 2.9 L of H2/L cheese whey and 1.9 L of H2/L cheese whey, respectively. The effluent from the hydrogenogenic reactor was further digested to biogas in a continuous mesophilic anaerobic bioreactor. The anaerobic digester was operated at an HRT of 20d and produced approximately 1 L CH4/d, corresponding to a yield of 6.7 L CH4/L of influent. The chemical oxygen demand (COD) elimination reached 95.3% demonstrating that cheese whey could be efficiently used for hydrogen and methane production, in a two-stage process. 相似文献
48.
Tsoukias Nikolaos M.; Tannous Ziad; Wilson Archie F.; George Steven C. 《Journal of applied physiology》1998,85(2):642-652
Endogenousproduction of nitric oxide (NO) in the human lungs has many importantpathophysiological roles and can be detected in the exhaled breath. Anunderstanding of the factors that dictate the shape of the NOexhalation profile is fundamental to our understanding of normal anddiseased lung function. We collected single-exhalation profiles of NOand CO2 from normal human subjectsafter inhalation of ambient air (~15 parts/billion) and examined theeffect of a 15-s breath hold and exhalation flow rate(E) on thefollowing features of the NO profile:1) series dead space,2) average concentration in phaseIII with respect to time and volume,3) normalized slope of phase IIIwith respect to time and volume, and4) elimination rate at endexhalation. The dead space is ~50% smaller for NO than forCO2 and is substantially reducedafter a breath hold. The concentration of exhaled NO is inverselyrelated to E,but the average NO concentration with respect to time has a stronger inverse relationship than that with respect to volume. The normalized slope of phase III NO with respect to time and that with respect tovolume are negative at a constantE but can bemade to change signs if the flow rate continuously decreases during theexhalation. In addition, NO elimination at end exhalation vs.E produces anonzero intercept and slope that are subject dependent and can be usedto quantitate the relative contribution of the airways and the alveolito exhaled NO. We conclude that exhaled NO has an airway and analveolar source. 相似文献
49.
The terminal electron acceptor of Photosystem II, PSII, is a linear complex consisting of a primary quinone, a non-heme iron(II), and a secondary quinone, Q(A)Fe(2+)Q(B). The complex is a sensitive site of PSII, where electron transfer is modulated by environmental factors and notably by bicarbonate. Earlier studies showed that NO and other small molecules (CN(-), F(-), carboxylate anions) bind reversibly on the non-heme iron in competition with bicarbonate. In the present study, we report on an unusual new mode of transient binding of NO, which is favored in the light-reduced state (Q(A)(-)Fe(2+)Q(B)) of the complex. The related observations are summarized as follows: (i) Incubation with NO at -30 degrees C, following light-induced charge separation, results in the evolution of a new EPR signal at g = 2.016. The signal correlates with the reduced state Q(A)(-)Fe(2+) of the iron-quinone complex. (ii) Cyanide, at low concentrations, converts the signal to a more rhombic form with g values at 2.027 (peak) and 1.976 (valley), while at high concentrations it inhibits formation of the signals. (iii) Electron spin-echo envelope modulation (ESEEM) experiments show the existence of two protein (14)N nuclei coupled to electron spin. These two nitrogens have been detected consistently in the environment of the semiquinone Q(A)(-) in a number of PSII preparations. (iv) NO does not directly contribute to the signals, as indicated by the absence of a detectable isotopic effect ((15)NO vs (14)NO) in cw EPR. (v) A third signal with g values (2.05, 2.03, 2.01) identical to those of an Fe(NO)(2)(imidazole) synthetic complex develops slowly in the dark, or faster following illumination. (vi) In comparison with the untreated Q(A)(-)Fe(2+) complex, the present signals not only are confined to a narrow spectral region but also saturate at low microwave power. At 11 K the g = 2.016 signal saturates with a P(1/2) of 110 microW and the g = 2.027/1.976 signal with a P(1/2) of 10 microW. (vii) The spectral shape and spin concentration of these signals is successfully reproduced, assuming a weak magnetic interaction (J values in the range 0.025-0.05 cm(-)(1)) between an iron-NO complex with total spin of (1)/(2) and the spin, (1)/(2), of the semiquinone, Q(A)(-). The different modes of binding of NO to the non-heme iron are examined in the context of a molecular model. An important aspect of the model is a trans influence of Q(A) reduction on the bicarbonate ligation to the iron, transmitted via H-bonding of Q(A) with an imidazole ligand to the iron. 相似文献
50.
Julien R. C. Bergeron Liam J. Worrall Nikolaos G. Sgourakis Frank DiMaio Richard A. Pfuetzner Heather B. Felise Marija Vuckovic Angel C. Yu Samuel I. Miller David Baker Natalie C. J. Strynadka 《PLoS pathogens》2013,9(4)
The T3SS injectisome is a syringe-shaped macromolecular assembly found in pathogenic Gram-negative bacteria that allows for the direct delivery of virulence effectors into host cells. It is composed of a “basal body”, a lock-nut structure spanning both bacterial membranes, and a “needle” that protrudes away from the bacterial surface. A hollow channel spans throughout the apparatus, permitting the translocation of effector proteins from the bacterial cytosol to the host plasma membrane. The basal body is composed largely of three membrane-embedded proteins that form oligomerized concentric rings. Here, we report the crystal structures of three domains of the prototypical Salmonella SPI-1 basal body, and use a new approach incorporating symmetric flexible backbone docking and EM data to produce a model for their oligomeric assembly. The obtained models, validated by biochemical and in vivo assays, reveal the molecular details of the interactions driving basal body assembly, and notably demonstrate a conserved oligomerization mechanism. 相似文献