首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   33篇
  国内免费   1篇
  783篇
  2023年   1篇
  2022年   3篇
  2021年   23篇
  2020年   9篇
  2019年   9篇
  2018年   19篇
  2017年   15篇
  2016年   16篇
  2015年   42篇
  2014年   44篇
  2013年   51篇
  2012年   81篇
  2011年   69篇
  2010年   31篇
  2009年   45篇
  2008年   62篇
  2007年   57篇
  2006年   41篇
  2005年   37篇
  2004年   33篇
  2003年   19篇
  2002年   22篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   7篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1966年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有783条查询结果,搜索用时 62 毫秒
61.
Glutathione S-transferases (GSTs, EC 2.5.1.18) are a multigene family of detoxification enzymes that biotransform a wide variety of endogenous and exogenous electrophilic substrates, including herbicides. The isozyme GST I from maize exhibits significant catalytic activity for the chloroacetanilide herbicide alachlor and appears to be involved in its detoxifying process. To establish the in planta ability of GST I to detoxify from alachlor, transgenesis studies were carried out. The gene gstI-6His, which encodes for 6His-tagged GST I, was used for the construction of a binary vector suitable for genetic engineering of tobacco plants (Nicotiana tabacum). Through biolistic method transgenic tobacco plants were obtained. Integration of gstI-6His gene in transgenic tobacco plants genome was confirmed by polymerase chain reaction and Southern blot hybridization. The expression of active GST I was established by Western blot analysis, using anti-6His antibody, and by direct purification of 6-His tagged GST I on Ni-NTA agarose. Primary transformed plants harboring the gstI-6His gene were transferred to MS medium supplemented with alachlor and their phenotype was evaluated. The transgenic plants showed substantially higher tolerance to alachlor compared to non-transgenic plants in terms of root, leaves and vigorous development. These transgenic plants are potentially useful biotechnological tools for the development of phytoremediation system for the degradation of herbicide pollutants in agricultural fields.  相似文献   
62.
Appican produced by rat C6 glioma cells, the chondroitin sulfate (CS) proteoglycan form of the amyloid precursor protein, contains an E disaccharide, -GlcUA-GalNAc(4,6-O-disulfate)-, in its CS chain. In this study, the appican CS chain from rat C6 glioma cells was shown to specifically bind several growth/differentiation factors including midkine (MK) and pleiotrophin (PTN). In contrast, the appican CS from SH-SY5Y neuroblastoma cells contained no E disaccharide and showed no binding to either MK or PTN. These findings indicate that the E motif is essential in the interaction of the appican CS chain with growth/differentiation factors, and suggest that glial appican may mediate the regulation of neuronal cell adhesion and migration and/or neurite outgrowth.  相似文献   
63.
Although C-terminal Src kinase (CSK)-homologous kinase (CHK) is generally believed to inactivate Src-family tyrosine kinases (SFKs) by phosphorylating their consensus C-terminal regulatory tyrosine (Tyr(T)), exactly how CHK inactivates SFKs is not fully understood. Herein, we report that in addition to phosphorylating Tyr(T), CHK can inhibit SFKs by a novel non-catalytic mechanism. First, CHK directly binds to the SFK members Hck, Lyn, and Src to form stable protein complexes. The complex formation is mediated by a non-catalytic Tyr(T)-independent mechanism because it occurs even in the absence of ATP or when Tyr(T) of Hck is replaced by phenylalanine. Second, the non-catalytic CHK-SFK interaction alone is sufficient to inactivate SFKs by inhibiting the catalytic activity of autophosphorylated SFKs. Third, CHK and Src co-localize to specific plasma membrane microdomains of rat brain cells, suggesting that CHK is in close proximity to Src such that it can effectively inactivate Src in vivo. Fourth, native CHK.Src complex exists in rat brain, and recombinant CHK.Hck complex exists in transfected HEK293T cells, implying that CHK forms stable complexes with SFKs in vivo. Taken together, our findings suggest that CHK inactivates SFKs (i) by phosphorylating their Tyr(T) and (ii) by this novel Tyr(T)-independent mechanism involving direct binding of CHK to SFKs. It has been documented that autophosphorylated SFKs can still be active, in some cases even when their Tyr(T) is phosphorylated. Thus, the ability of the Tyr(T)-independent mechanism to suppress the activity of both non-phosphorylated and autophosphorylated SFKs represents a fail-safe measure employed by CHK to down-regulate SFK signaling under all circumstances.  相似文献   
64.
65.
Here, the synthesis and the evaluation of novel 20-aminosteroids on androgen receptor (AR) activity is reported. Compounds 11 and 18 of the series inhibit both the wild type and the T877A mutant AR-mediated transactivation indicating AR antagonistic function. Interestingly, minor structural changes such as stereoisomers of the amino lactame moiety exhibit preferences for antagonism among wild type and mutant AR. Other tested nuclear receptors are only weakly or not affected. In line with this, the prostate cancer cell growth of androgen-dependent but not of cancer cells lacking expression of the AR is inhibited. Further, the expression of the prostate specific antigen used as a diagnostic marker is also repressed. Finally steroid 18 enhances cellular senescence that might explain in part the growth inhibition mediated by this derivative. Steroids 11 and 18 are the first steroids that act as complete AR antagonists and exhibit AR specificity.  相似文献   
66.
Bidirectional signaling triggered by interacting ephrinB receptors (EphB) and ephrinB ligands is crucial for development and function of the vascular and nervous systems. A signaling cascade triggered by this interaction involves activation of Src kinase and phosphorylation of ephrinB. The mechanism, however, by which EphB activates Src in the ephrinB-expressing cells is unknown. Here we show that EphB stimulates a metalloproteinase cleavage of ephrinB2, producing a carboxy-terminal fragment that is further processed by PS1/gamma-secretase to produce intracellular peptide ephrinB2/CTF2. This peptide binds Src and inhibits its association with inhibitory kinase Csk, allowing autophosphorylation of Src at residue tyr418. EphrinB2/CTF2-activated Src phosphorylates ephrinB2 and inhibits its processing by gamma-secretase. These data show that the PS1/gamma-secretase system controls Src activation and ephrinB phosphorylation by regulating production of Src activator ephrinB2/CTF2. Accordingly, gamma-secretase inhibitors prevented the EphB-induced sprouting of endothelial cells and the recruitment of Grb4 to ephrinB. PS1 FAD and gamma-secretase dominant-negative mutants inhibited the EphB-induced cleavage of ephrinB2 and Src autophosphorylation, raising the possibility that FAD mutants interfere with the functions of Src and ephrinB2 in the CNS.  相似文献   
67.
Poly(A)-specific ribonuclease (PARN) is a cap-interacting and poly(A)-specific 3'-exoribonuclease. Here we have investigated how the cap binding complex (CBC) affects human PARN activity. We showed that CBC, via its 80-kDa subunit (CBP80), inhibited PARN, suggesting that CBC can regulate mRNA deadenylation. The CBC-mediated inhibition of PARN was cap-independent, and in keeping with this, the CBP80 subunit alone inhibited PARN. Our data suggested a new function for CBC, identified CBC as a potential regulator of PARN, and emphasized the importance of communication between the two extreme ends of the mRNA as a key strategy to regulate mRNA degradation. Based on our data, we have proposed a model for CBC-mediated regulation of PARN, which relies on an interaction between CBP80 and PARN. Association of CBC with PARN might have importance in the regulated recruitment of PARN to the nonsense-mediated decay pathway during the pioneer round of translation.  相似文献   
68.
Synthetic carriers play an important role in immunogen presentation, due to their ability of inducing improved and specific responses to conjugated epitopes. Their influence on the bioactive conformation of the epitope, though admittedly crucial for relevant in vitro and in vivo applications, is difficult to evaluate, given the usual lack of information on the complex conformational features determined by the nature of the carrier and the mode of ligation. Using the Herpes simplex virus glycoprotein D-1 epitope (Leu(9)-Lys-Nle-Ala-Asp-Pro-Asn-Arg-Phe-Arg-Gly-Lys-Asp-Leu(22)) as a model, we have performed a detailed conformational analysis on the free epitope peptide in solution and on three constructs in which the epitope was conjugated to sequential oligopeptide carriers {Ac-[Lys-Aib-Gly](4)-OH (SOC(4))} (through either a thioether or an amide bond; Ac: acetyl) and polytuftsin oligomers {H-[Thr-Lys-Pro-Lys-Gly](4)-NH(2) (T20)}, (through a thioether bond). The analysis of the epitope conformation in the parent protein, in carrier-conjugated and free form, suggests that the beta-turn structure of the -Asp(13)-Pro-Asn-Arg(16)- segment is highly conserved and independent of the epitope form. However, small conformational variations were observed at the C-terminal part of the epitope, depending on the nature of the carrier.  相似文献   
69.
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   
70.
The intercellular synchronization of spontaneous calcium (Ca(2+)) oscillations in individual smooth muscle cells is a prerequisite for vasomotion. A detailed mathematical model of Ca(2+) dynamics in rat mesenteric arteries shows that a number of synchronizing and desynchronizing pathways may be involved. In particular, Ca(2+)-dependent phospholipase C, the intercellular diffusion of inositol trisphosphate (IP(3), and to a lesser extent Ca(2+)), IP(3) receptors, diacylglycerol-activated nonselective cation channels, and Ca(2+)-activated chloride channels can contribute to synchronization, whereas large-conductance Ca(2+)-activated potassium channels have a desynchronizing effect. Depending on the contractile state and agonist concentrations, different pathways become predominant, and can be revealed by carefully inhibiting the oscillatory component of their total activity. The phase shift between the Ca(2+) and membrane potential oscillations can change, and thus electrical coupling through gap junctions can mediate either synchronization or desynchronization. The effect of the endothelium is highly variable because it can simultaneously enhance the intercellular coupling and affect multiple smooth muscle cell components. Here, we outline a system of increased complexity and propose potential synchronization mechanisms that need to be experimentally tested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号