首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1229篇
  免费   94篇
  国内免费   3篇
  2023年   4篇
  2022年   16篇
  2021年   13篇
  2020年   16篇
  2019年   26篇
  2018年   27篇
  2017年   28篇
  2016年   28篇
  2015年   48篇
  2014年   55篇
  2013年   71篇
  2012年   94篇
  2011年   89篇
  2010年   58篇
  2009年   48篇
  2008年   54篇
  2007年   67篇
  2006年   71篇
  2005年   57篇
  2004年   77篇
  2003年   61篇
  2002年   70篇
  2001年   17篇
  2000年   15篇
  1999年   19篇
  1998年   22篇
  1997年   19篇
  1996年   23篇
  1995年   7篇
  1994年   8篇
  1993年   12篇
  1992年   10篇
  1991年   7篇
  1990年   9篇
  1989年   5篇
  1987年   7篇
  1986年   7篇
  1984年   4篇
  1983年   7篇
  1982年   4篇
  1981年   10篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1972年   2篇
  1969年   2篇
  1945年   2篇
排序方式: 共有1326条查询结果,搜索用时 31 毫秒
61.
Active partition of the F plasmid to dividing daughter cells is assured by interactions between proteins SopA and SopB, and a centromere, sopC. A close homologue of the sop operon is present in the linear prophage N15 and, together with sopC-like sequences, it ensures stability of this replicon. We have exploited this sequence similarity to construct hybrid sop operons with the aim of locating specific interaction determinants within the SopA and SopB proteins that are needed for partition function and for autoregulation of sopAB expression. Centromere binding was found to be specified entirely by a central 25 residue region of SopB strongly predicted to form a helix-turn-helix structure. SopB protein also carries a species-specific SopA-interaction determinant within its N-terminal 45 amino acids, and, as shown by Escherichia coli two-hybrid analysis, a dimerization domain within its C-terminal 75 (F) or 97 (N15) residues. Promoter-operator binding specificity was located within an N-terminal 66 residue region of SopA, which is predicted to contain a helix-turn-helix motif. Two other regions of SopA protein, one next to the ATPase Walker A-box, the other C-terminal, specify interaction with SopB. Yeast two-hybrid analysis indicated that these regions contact SopB directly. Evidence for the involvement of the SopA N terminus in autoinhibition of SopA function was obtained, revealing a possible new aspect of the role of SopB in SopA activation.  相似文献   
62.
A novel gain-of-function mutation, R243Q, has been recently identified in the Candida elegans Gqalpha protein EGL-30. The position corresponding to Arg243 in EGL-30 is absolutely conserved among heterotrimeric G proteins. This mutation appears to be the first gain-of-function mutation in the switch III region of Galpha subunits. To investigate consequences of the R-->Q mutation we introduced the corresponding R238Q mutation into transducin-like Gtalpha* subunit. The mutant retained intact interactions with Gtbetagamma and rhodopsin but exhibited a twofold reduction in the kcat value for guanosine 5'-triphosphate (GTP) hydrolysis. The GTPase activity of R238Q was not accelerated by the RGS domain of the visual GTPase-activating protein, RGS9-1. In addition, R238Q displayed a significant impairment in the effector function. Our data and the crystal structures of transducin suggest that the major reason for the reduced intrinsic GTPase activity of R238Q and the lack of RGS9 function is the break of the conserved ionic contact between Arg238 and Glu39, which apparently stabilizes the transitional state for GTP hydrolysis. We hypothesize that the R243Q mutation in EGL-30 severs the ionic interaction of Arg243 with Glu43, leading to a defective inactivation of the mutant by the C. elegans RGS protein EAT-16.  相似文献   
63.
Three cytoplasmic loops in the G protein-coupled receptor rhodopsin, C2, C3, and C4, have been implicated as key sites for binding and activation of the visual G protein transducin. Non-helical portions of the C2- and C3-loops and the cytoplasmic helix-8 from the C4 loop were targeted for a "gain-of-function" mutagenesis to identify rhodopsin residues critical for transducin activation. Mutant opsins with residues 140-148 (C2-loop), 229-244 (C3-loop), or 310-320 (C4-loop) substituted by poly-Ala sequences of equivalent lengths served as templates for mutagenesis. The template mutants with poly-Ala substitutions in the C2- and C3-loops formed the 500-nm absorbing pigments but failed to activate transducin. Reverse substitutions of the Ala residues by rhodopsin residues have been generated in each of the templates. Significant ( approximately 50%) restoration of the rhodopsin/transducin coupling was achieved with re-introduction of residues Cys140/Lys141 and Arg147/Phe148 into the C2 template. The reverse substitutions of the C3-loop residues Thr229/Val230 and Ser240/Thr242/Thr243/Gln244 produced a pigment with a full capacity for transducin activation. The C4 template mutant was unable to bind 11-cis-retinal, and the presence of Asn310/Lys311 was required for correct folding of the protein. Subsequent mutagenesis of the C4-loop revealed the role of Phe313 and Met317. On the background of Asn310/Lys311, the inclusion of Phe313 and Met317 produced a mutant pigment with the potency of transducin activation equal to that of the wild-type rhodopsin. Overall, our data support the role of the three cytoplasmic loops of rhodopsin and suggest that residues adjacent to the transmembrane helices are most important for transducin activation.  相似文献   
64.
Light modulation of the ability of three artificial quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duroquinone), to quench chlorophyll (Chl) fluorescence photochemically or non-photochemically was studied to simulate the functions of endogenous plastoquinones during the thermal phase of fast Chl fluorescence induction kinetics. DBMIB was found to suppress by severalfold the basal level of Chl fluorescence (F(o)) and to markedly retard the light-induced rise of variable fluorescence (F(v)). After irradiation with actinic light, Chl fluorescence rapidly dropped down to the level corresponding to F(o) level in untreated thylakoids and then slowly declined to the initial level. DBMIB was found to be an efficient photochemical quencher of energy in Photosystem II (PSII) in the dark, but not after prolonged irradiation. Those events were owing to DBMIB reduction under light and its oxidation in the dark. At high concentrations, DCBQ exhibited quenching behaviours similar to those of DBMIB. In contrast, duroquinone demonstrated the ability to quench F(v) at low concentration, while F(o) was declined only at high concentrations of this artificial quinone. Unlike for DBMIB and DCBQ, quenched F(o) level was attained rapidly after actinic light had been turned off in the presence of high duroquinone concentrations. That finding evidenced that the capacity of duroquinone to non-photochemically quench excitation energy in PSII was maintained during irradiation, which is likely owing to the rapid electron transfer from duroquinol to Photosystem I (PSI). It was suggested that DBMIB and DCBQ at high concentration, on the one hand, and duroquinone, on the other hand, mimic the properties of plastoquinones as photochemical and non-photochemical quenchers of energy in PSII under different conditions. The first model corresponds to the conditions under which the plastoquinone pool can be largely reduced (weak electron release from PSII to PSI compared to PSII-driven electron flow from water under strong light and weak PSI photochemical capacity because of inactive electron transport on its reducing side), while the second one mimics the behaviour of the plastoquinone pool when it cannot be filled up with electrons (weak or moderate light and high photochemical competence of PSI).  相似文献   
65.
Addition of NADP(+) to thylakoid membranes or isolated photosystem I (PSI) submembrane fractions quenched chlorophyll fluorescence by up to 40% at low or room temperature. This quenching was reversed by NADPH. Similar quenching was also observed with the addition of heparin or thenoyltrifluoroacetone (TTFA), inhibitors that bind ferredoxin:NADP(+) reductase (FNR) and prevent reduction of NADP(+). The NADP(+)-induced quenching coincided with a reversible conformational change of the secondary protein structure in the PSI submembrane fractions where 20% of the alpha-helix conformations were transformed mainly into beta-sheet-like structures. Further, P700 photooxidation was retarded due to this conformational change, and about 25% of the centers could not be photooxidized, these changes being also reversible with addition of NADPH. The above modifications in the presence of NADP(+) also increased photodamage processes under strong illumination, and NADPH protected it. Conformational modification of FNR upon binding of NADP(+) or NADPH is proposed to trigger the macromolecular changes in a larger part of the protein complex of PSI. The conformational changes must increase the intermolecular distances and change the mutual orientation between the various cofactors in the PSI complex. This new control mechanism of energy dissipation and photochemical activity by NADP(+)/NADPH is proposed to increase the turnover rate of PSI under conditions when both linear and cyclic electron transport activities must be supported.  相似文献   
66.
The (1)H NMR resonances of the heme substituents of the low-spin Fe(III) form of nitrophorin 2, as its complexes with N-methylimidazole (NP2-NMeIm) and imidazole (NP2-ImH), have been assigned by a combination of (1)H homonuclear two-dimensional NMR techniques and (1)H-(13)C HMQC. Complete assignment of the proton and partial assignment of the (13)C resonances of the heme of these complexes has been achieved. Due to favorable rates of ligand exchange, it was also possible to assign part of the (1)H resonances of the high-spin heme via saturation transfer between high- and low-spin protein forms in a partially liganded NP2-NMeIm sample; additional resonances (vinyl and propionate) were assigned by NOESY techniques. The order of heme methyl resonances in the high-spin form of the protein over the temperature range of 10-37 degrees C is 8 = 5 > 1 > 3; the NMeIm complex has 5 > 1 > 3 > 8 as the order of heme methyl resonances at <30 degrees C, while above that temperature, the order is 5 > 3 > 1 > 8, due to crossover of the closely spaced 3- and 1-methyl resonances of the low-spin complex at higher temperatures. This crossover defines the nodal plane of the heme orbital used for spin delocalization as being oriented 162 +/- 2 degrees clockwise from the heme N(II)-Fe-N(IV) axis for the heme in the B orientation. For the NP2-ImH complex, the order of heme methyl resonances is 3 > 5 > 1 > 8, which defines the orientation of the nodal plane of the heme orbital used for spin delocalization as being oriented approximately 150-155 degrees clockwise from the heme N(II)-Fe-N(IV) axis. In both low-spin complexes, the results are most consistent with the exogenous planar ligand controlling the orientation of the nodal plane of the heme orbital. In the high-spin form of NP2, the proximal histidine plane is shown to be oriented 135 degrees clockwise from the heme N(II)-Fe-N(IV) axis, again for the B heme orientation. A correlation between the order of heme methyl resonances in the high-spin form of NP2 and several other ferriheme proteins and an apparent 90 degrees shift in the nodal plane of the orbital involved in spin delocalization from that expected on the basis of the orientation of the axial histidine imidazole nodal plane have been explained in terms of bonding interactions between Fe(III), the axial histidine imidazole nitrogen, and the porphyrin pi orbitals of the high-spin protein.  相似文献   
67.
To investigate whether nongastric H+-K+-ATPases transport Na+ in exchange for K+ and whether different beta-isoforms influence their transport properties, we compared the functional properties of the catalytic subunit of human nongastric H+-K+-ATPase, ATP1al1 (AL1), and of the Na+-K+-ATPase alpha1-subunit (alpha1) expressed in Xenopus oocytes, with different beta-subunits. Our results show that betaHK and beta1-NK can produce functional AL1/beta complexes at the oocyte cell surface that, in contrast to alpha1/beta1 NK and alpha1/betaHK complexes, exhibit a similar apparent K+ affinity. Similar to Na+-K+-ATPase, AL1/beta complexes are able to decrease intracellular Na+ concentrations in Na+-loaded oocytes, and their K+ transport depends on intra- and extracellular Na+ concentrations. Finally, controlled trypsinolysis reveals that beta-isoforms influence the protease sensitivity of AL1 and alpha1 and that AL1/beta complexes, similar to the Na+-K+-ATPase, can undergo distinct K+-Na+- and ouabain-dependent conformational changes. These results provide new evidence that the human nongastric H+-K+-ATPase interacts with and transports Na+ in exchange for K+ and that beta-isoforms have a distinct effect on the overall structural integrity of AL1 but influence its transport properties less than those of the Na+-K+-ATPase alpha-subunit.  相似文献   
68.
69.
The MkaH protein from the archaeon Methanopyrus kandleri, an unusual assembly of two histone-fold domains in a single polypeptide chain, demonstrates high structural similarity to eukaryal histones. We studied the DNA binding and self-association properties of MkaH by means of the electrophoretic mobility shift assay (EMSA), electron microscopy (EM), chemical cross-linking, and analytical gel filtration. EMSA showed an increased mobility of linear DNA complexed with MkaH protein with a maximum at a protein-DNA weight ratio (R(w)) of approximately 3; the mobility decreased at higher protein concentration. EM of the complexes formed at Rw or=9) thickened compact nucleoprotein structures were observed; no individual loops were seen within the complexes. Gel filtration chromatography and chemical fixation indicated that in the absence of DNA the dominant form of the MkaH in solution, unlike other archaeal histones, is a stable dimer (pseudo-tetramer of the histone-fold domain) apparently resembling the eukaryal (H3-H4)(2) tetramer. Similarly, dimers are the dominant form of the protein interacting with DNA. The properties of MkaH supporting the assignment of its intermediate position between other archaeal and eukaryal histones are discussed.  相似文献   
70.
Dietary soy may attenuate the development of arterial hypertension. In addition, some soy-containing foods exhibit angiotensin-converting enzyme (ACE) inhibitory properties. Accordingly, we tested the hypothesis that ACE inhibition contributes to the antihypertensive effect of dietary soy. Mean arterial blood pressure (MAP) was recorded from conscious spontaneously hypertensive rats (SHR) at least 24 h after the implantation of catheters. Cumulative dose-response curves to intravenous angiotensin I (AI) (5-100 ng x kg(-1) x min(-1)) and angiotensin II (AII) (1-20 ng x kg(-1) x min(-1)) were constructed for male, sham-operated female, and ovariectomized female (OVX) SHR that were maintained on either casein or soy diets. The soy diet was associated with a significant reduction in baseline MAP in the OVX SHR (approximately 20 mmHg, 1 mmHg = 133.322 Pa). AI and AII infusions caused graded increases in MAP in all groups. However, there was no significant attenuation of the pressor responses to AI in the soy-fed SHR. Conversely, we observed a significant rightward displacement of the AII dose-response curves in the soy-fed sham-operated and OVX SHR. We conclude that ACE inhibition does not account for the antihypertensive effect of dietary soy in mature SHR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号