首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1230篇
  免费   95篇
  国内免费   3篇
  2023年   4篇
  2022年   18篇
  2021年   13篇
  2020年   16篇
  2019年   26篇
  2018年   27篇
  2017年   28篇
  2016年   28篇
  2015年   48篇
  2014年   55篇
  2013年   71篇
  2012年   94篇
  2011年   89篇
  2010年   58篇
  2009年   48篇
  2008年   54篇
  2007年   67篇
  2006年   71篇
  2005年   57篇
  2004年   77篇
  2003年   61篇
  2002年   70篇
  2001年   17篇
  2000年   15篇
  1999年   19篇
  1998年   22篇
  1997年   19篇
  1996年   23篇
  1995年   7篇
  1994年   8篇
  1993年   12篇
  1992年   10篇
  1991年   7篇
  1990年   9篇
  1989年   5篇
  1987年   7篇
  1986年   7篇
  1984年   4篇
  1983年   7篇
  1982年   4篇
  1981年   10篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1972年   2篇
  1969年   2篇
  1945年   2篇
排序方式: 共有1328条查询结果,搜索用时 15 毫秒
111.
112.
Microsatellites, or simple sequence repeats (SSRs) are very useful molecular markers for a number of plant species. They are commonly used in cultivar identification, plant variety protection, as anchor markers in genetic mapping, and in marker-assisted breeding. Early development of SSRs was hampered by the high cost of library screening and clone sequencing. Currently, large public SSR datasets exist for many crop species, but the number of publicly available, mapped SSRs for potato is relatively low (~100). We have utilized a database mining approach to identify SSR-containing sequences in The Institute For Genomic Research Potato Gene Index database (), focusing on sequences with size polymorphisms present in this dataset. Ninety-four primer pairs flanking SSR sequences were synthesized and used to amplify potato DNA. This study rendered 61 useful SSRs that were located in pre-existing genetic maps, fingerprinted in a set of 30 cultivars from South America, North America, and Europe or a combination thereof. The high proportion of success (65%) of expressed sequence tag-derived SSRs obtained in this work validates the use of transcribed sequences as a source of markers. These markers will be useful for genetic mapping, taxonomic studies, marker-assisted selection, and cultivar identification.  相似文献   
113.
114.
In proteins and peptides, the vast majority of peptide bonds occurs in trans conformation, but a considerable fraction (about 5%) of X-Pro bonds adopts the cis conformation. Here we study the conservation of cis prolyl residues in evolutionary related proteins. We find that overall, in contrast to local, protein sequence similarity is a clear indicator for the conformation of prolyl residues. We observe that cis prolyl residues are more often conserved than trans prolyl residues, and both are more conserved than the surrounding amino acids, which show the same extent of conservation as the whole protein. The pattern of amino acid exchanges differs between cis and trans prolyl residues. Also, the cis prolyl bond is maintained in proteins with sequence identity as low as 20%. This finding emphasizes the importance of cis peptide bonds in protein structure and function.  相似文献   
115.
116.
A new off-resonance spin-lock experiment to record relaxation dispersion profiles of amide protons is presented. The sensitivity-enhanced HSQC-type sequence is designed to minimize the interference from cross-relaxation effects and ensure that the dispersion profiles in the absence of μs-ms time-scale dynamics are flat. Toward this end (i) the proton background is eliminated by sample deuteration (Ishima et al., 1998), (ii) 1H spin lock is applied to two-spin modes 2(HxSin ϑ + HzCos ϑ) Nz, and (iii) the tilt angle ϑ ≈ 35° is maintained throughout the series of measurements (Desvaux et al. Mol. Phys., 86 (1995) 1059). The relaxation dispersion profiles recorded in this manner sample a wide range of effective rf field strengths (up to and in excess of 20 kHz) which makes them particularly suitable for studies of motions on the time scale ≤100 μs. The new experiment has been tested on the Ca2+-loaded regulatory domain of cardiac troponin C. Many residues show pronounced dispersions with remarkably similar correlation times of 30 μs. Furthermore, these residues are localized in the regions that have been previously implicated in conformational changes (Spyracopoulos et al. Biochemistry, 36 (1997) 12138) Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   
117.
Changes in the number of mitochondrial DNA (mtDNA) copies in the brain and spleen tissues of gamma-irradiated (3 Gy) mice were studied by comparative analysis of the long-extension PCR products of mtDNA (15.9 kb) and a fragment of the cluster nuclear beta-globin gene (8.7 kb) amplified simultaneously in one and the same test-tube within total DNA. The analysis showed that, compared to the nuclear beta-globin gene, an increase in mtDNA copy number (polyploidization) took place in the brain and spleen cells of mice exposed to gamma-radiation. This data led to the suggestion that the major mechanism for maintenance of the mitochondrial genome, which is constantly damaged by endogenous ROS and easily affected by ionizing radiation or other exogenous factors, is the induction of synthesis of new mtDNA copies on intact or little affected mtDNA templates because the repair systems in the mitochondria function at a low level of efficiency.  相似文献   
118.
Intestinal development and homeostasis rely on the coordination of proliferation and differentiation of the epithelium. To better understand this process, we are studying Rbm19, a gene expressed in the gut epithelium that is essential for intestinal morphogenesis and differentiation in the zebrafish (Development 130, 3917). Here we analyzed the expression of Rbm19 in several biological contexts that feature proliferation/differentiation cell fate decisions. In the undifferentiated embryonic gut tube, Rbm19 is expressed throughout the epithelium, but then becomes localized to the crypts of Lieberkühn of the adult intestine. Consistent with its expression in adult crypt/progenitor cells, expression is widespread in human colorectal carcinomas and dividing Caco-2 cells. Its expression in Caco-2 cells recapitulates the in vivo pattern, declining when the cells undergo confluence-induced arrest and differentiation. Rbm19 protein localizes to the nucleolus during interphase and to the perichromosomal sheath during mitosis, in accordance with the pattern described for other nucleolar proteins implicated in ribosome biogenesis. Interestingly, the loss of nucleolar rbm19, nucleolin/C23, and nucleophosmin/B23 in confluent Caco-2 cells did not signify loss of nucleoli as detected by electron microscopy. Taken together, these data point to the nucleolus as a possible locus for regulating the proliferation/differentiation cell fate decision in the intestinal epithelium.  相似文献   
119.
Voltage-gated Ca(v)1.2 channels are composed of the pore-forming alpha1C and auxiliary beta and alpha2delta subunits. Voltage-dependent conformational rearrangements of the alpha1C subunit C-tail have been implicated in Ca2+ signal transduction. In contrast, the alpha1C N-tail demonstrates limited voltage-gated mobility. We have asked whether these properties are critical for the channel function. Here we report that transient anchoring of the alpha1C subunit C-tail in the plasma membrane inhibits Ca2+-dependent and slow voltage-dependent inactivation. Both alpha2delta and beta subunits remain essential for the functional channel. In contrast, if alpha1C subunits with are expressed alpha2delta but in the absence of a beta subunit, plasma membrane anchoring of the alpha1C N terminus or its deletion inhibit both voltage- and Ca2+-dependent inactivation of the current. The following findings all corroborate the importance of the alpha1C N-tail/beta interaction: (i) co-expression of beta restores inactivation properties, (ii) release of the alpha1C N terminus inhibits the beta-deficient channel, and (iii) voltage-gated mobility of the alpha1C N-tail vis a vis the plasma membrane is increased in the beta-deficient (silent) channel. Together, these data argue that both the alpha1C N- and C-tails have important but different roles in the voltage- and Ca2+-dependent inactivation, as well as beta subunit modulation of the channel. The alpha1C N-tail may have a role in the channel trafficking and is a target of the beta subunit modulation. The beta subunit facilitates voltage gating by competing with the N-tail and constraining its voltage-dependent rearrangements. Thus, cross-talk between the alpha1C C and N termini, beta subunit, and the cytoplasmic pore region confers the multifactorial regulation of Ca(v)1.2 channels.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号