首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   824篇
  免费   71篇
  895篇
  2022年   10篇
  2021年   14篇
  2020年   12篇
  2019年   13篇
  2018年   16篇
  2017年   13篇
  2016年   20篇
  2015年   41篇
  2014年   43篇
  2013年   40篇
  2012年   45篇
  2011年   62篇
  2010年   38篇
  2009年   24篇
  2008年   43篇
  2007年   28篇
  2006年   27篇
  2005年   40篇
  2004年   27篇
  2003年   30篇
  2002年   33篇
  2001年   16篇
  2000年   19篇
  1999年   9篇
  1998年   12篇
  1997年   6篇
  1996年   10篇
  1995年   11篇
  1994年   5篇
  1991年   6篇
  1990年   5篇
  1989年   14篇
  1988年   6篇
  1987年   7篇
  1986年   9篇
  1985年   5篇
  1983年   7篇
  1982年   9篇
  1980年   4篇
  1979年   4篇
  1976年   5篇
  1974年   5篇
  1973年   5篇
  1972年   7篇
  1970年   11篇
  1968年   7篇
  1966年   10篇
  1964年   4篇
  1947年   5篇
  1946年   3篇
排序方式: 共有895条查询结果,搜索用时 15 毫秒
41.
The design of functional materials for genomic and proteomic analyses in microscale systems has begun to mature, from materials designed for capillary-based electrophoresis systems to those tailored for microfluidic-based or 'chip-based' platforms. In particular, recent research has focused on evaluating different polymer chemistries for microchannel surface passivation and improved DNA separation matrix performance. Additionally, novel bioconjugate materials designed specifically for electrophoretic separations in microscale channels are facilitating new separation modalities.  相似文献   
42.
Horwitz AR  Watson N  Parsons JT 《Genome biology》2002,3(11):comment2011.1-comment20114
Understanding complex integrated biological processes, such as cell migration, requires interdisciplinary approaches. The Cell Migration Consortium, funded by a Large-Scale Collaborative Project Award from the National Institute of General Medical Science, develops and disseminates new technologies, data, reagents, and shared information to a wide audience. The development and operation of this Consortium may provide useful insights for those who plan similarly large-scale, interdisciplinary approaches.  相似文献   
43.
Nikki M  Meriläinen J  Lehto VP 《Biochemistry》2002,41(20):6320-6329
FAP52 is a recently described focal adhesion-associated protein. It is a member of an emerging PCH (pombe Cdc15 homology) family of proteins characterized by a common domain organization and involvement in actin cytoskeleton organization, cytokinesis, and vesicular trafficking. Using gel filtration, surface plasmon resonance, and native polyacrylamide gel electrophoresis analysis, combined with chemical cross-linking of both native and recombinant protein, we show that FAP52 self-associates in vitro and suggest that it occurs predominantly as a trimer also in vivo. Analysis of the various domains of FAP52 by surface plasmon resonance showed that the highly alpha-helical region in the N-terminal half of the protein provides the self-association interface. Overexpression of the oligomerization domain in cultured cells was accompanied by major alterations in cellular morphology, actin organization, and the structure of focal adhesions, suggesting that an orderly coming together of FAP52 molecules is crucial for a proper actin filament organization and cytoskeletal structure. Comparison of the primary structures shows that all of the members of the PCH family have, in their N-terminal halves, a similar, highly alpha-helical region, suggesting that they all have a capacity to self-associate.  相似文献   
44.
45.
The thermotolerant, ethanol-producing yeast strain Kluyveromyces marxianus IMB3 has been immobilized in calcium alginate gel and poly(vinyl alcohol) cryogel (PVAC) beads. The immobilized preparations were used as biocatalyst in fed-batch reactor systems for prolonged periods. The substrate utilized in each case consisted of sugar cane molasses diluted to yield a sugar load of 140?g/l. During the first cycle the maximum ethanol concentration produced by the alginate system was 57?g/l, representing 80% of the maximum theoretical yield. In the system employing the PVAC-immobilized biocatalyst, ethanol production increased to a maximum of 52–53?g/l, representing 73% of the maximum theoretical yield. In both cases, maximum ethanol concentration was achieved within a 72-hour period. When each system was operated on a fed-batch basis for a prolonged period of time the average ethanol concentrations produced in the alginate- and the PVAC-immobilized systems were 21 and 45?g/l, respectively. The results suggest that the PVAC-based immobilization system may provide a more practical alternative to alginate for the production of ethanol by K. marxianus IMB3 in continuous or semi-continuous fermentation systems.  相似文献   
46.
The complete nucleotide sequence of the mitochondrial genome of the coral Acropora tenuis has been determined. The 18,338 bp A. tenuis mitochondrial genome contains the standard metazoan complement of 13 protein-coding and two rRNA genes, but only the same two tRNA genes (trnM and trnW) as are present in the mtDNA of the sea anemone, Metridium senile. The A. tenuis nad5 gene is interrupted by a large group I intron which contains ten protein-coding genes and rns; M. senile has an intron at the same position but this contains only two protein-coding genes. Despite the large distance (about 11.5 kb) between the 5?-exon and 3?-exon boundaries, the A. tenuis nad5 gene is functional, as we were able to RT-PCR across the predicted intron splice site using total RNA from A. tenuis. As in M. senile, all of the genes in the A. tenuis mt genome have the same orientation, but their organization is completely different in these two zoantharians: The only common gene boundaries are those at each end of the group I intron and between trnM and rnl. Finally, we provide evidence that the rns-cox3 intergenic region in A. tenuis may correspond to the mitochondrial control region of higher animals. This region contains repetitive elements, and has the potential to form secondary structures of the type characteristic of vertebrate D-loops. Comparisons between a wide range of Acropora species showed that a long hairpin predicted in rns-cox3 is phylogenetically conserved, and allowed the tentative identification of conserved sequence blocks.  相似文献   
47.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
48.
Two dimensional NMR spectra of porcine brain natriuretic peptide have been recorded at 400 MHz. Peak assignments have been made and the combined information from chemical shifts, coupling constants, temperature coefficients, exchange studies and nuclear Overhauser effects has been used to determine the conformation of pBNP in aqueous media. Overall the peptide appears to be conformationally averaged with the possibility of some restricted flexibility in localized regions. The conformation of porcine brain natriuretic peptide in water is compared to previous studies in d6-DMSO and to studies of atrial natriuretic peptide and some closely related analogues in H2O and d6-DMSO.  相似文献   
49.
An efficient method for crossing green foxtail (Setaria viridis) is currently lacking. S. viridis is considered to be the new model plant for the study of C4 system in monocots and so an effective crossing protocol is urgently needed. S. viridis is a small grass with C4-NADP (ME) type of photosynthesis and has the advantage of having small genome of about 515 Mb, small plant stature, short life cycle, multiple tillers, and profuse seed set, and hence is an ideal model species for research. The objectives of this project were to develop efficient methods of emasculation and pollination, and to speed up generation advancement. We assessed the response of S. viridis flowers to hot water treatment (48°C) and to different concentrations of gibberellic acid, abscisic acid, maleic hydrazide (MH), and kinetin. We found that 500 μM of MH was effective in the emasculation of S. viridis, whilst still retaining the receptivity of the stigma to pollination. We also report effective ways to accelerate the breeding cycle of S. viridis for research through the germination of mature as well as immature seeds in optimized culture media. We believe these findings will be of great interest to researchers using Setaria.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号