首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   25篇
  2024年   2篇
  2023年   8篇
  2022年   13篇
  2021年   21篇
  2020年   9篇
  2019年   14篇
  2018年   29篇
  2017年   14篇
  2016年   16篇
  2015年   27篇
  2014年   19篇
  2013年   19篇
  2012年   26篇
  2011年   25篇
  2010年   9篇
  2009年   10篇
  2008年   10篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2004年   11篇
  2003年   6篇
  2002年   10篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1987年   1篇
排序方式: 共有326条查询结果,搜索用时 265 毫秒
111.
112.
Cell-penetrating peptides (CPPs) promote the uptake of different cargo molecules, e.g. therapeutic compounds, making the harnessing of CPPs a promising strategy for drug design and delivery. However, the internalization mechanisms of CPPs are still under discussion, and it is not clear how cells compensate the disturbances induced by peptides in the plasma membrane. In this study, we demonstrate that the uptake of various CPPs enhances the intracellular Ca(2+) levels in Jurkat and HeLa cells. The elevated Ca(2+) concentration in turn triggers plasma membrane blebbing, lysosomal exocytosis, and membrane repair response. Our results indicate that CPPs split into two major classes: (i) amphipathic CPPs that modulate the plasma membrane integrity inducing influx of Ca(2+) and activating downstream responses starting from low concentrations; (ii) non-amphipathic CPPs that do not evoke changes at relevant concentrations. Triggering of the membrane repair response may help cells to replace distorted plasma membrane regions and cells can recover from the influx of Ca(2+) if its level is not drastically elevated.  相似文献   
113.
Delmas P  Coste B  Gamper N  Shapiro MS 《Neuron》2005,47(2):179-182
Neuronal Ca2+ channels are key transducers coupling excitability to cellular function. As such, they are tightly regulated by multiple G protein-signaling pathways that finely tune their activity. In addition to fast, direct G(beta)gamma modulation of Ca2+ channels, a slower Galpha(q/11)-mediated mechanism has remained enigmatic despite intensive study. Recent work suggests that membrane phosphoinositides are crucial determinants of Ca2+ channel activity. Here, we discuss their role in Ca2+ channel modulation and the leading theories that seek to elucidate the underlying molecular details of the so-called "mysterious" G(q/11)-mediated signal.  相似文献   
114.
Human 8-oxoguanine-DNA glycosylase (hOgg1) excises 8-oxo-7,8-dihydroguanine (8-oxoG) from damaged DNA. We report a pre-steady-state kinetic analysis of hOgg1 mechanism using stopped-flow and enzyme fluorescence monitoring. The kinetic scheme for hOgg1 processing an 8-oxoG:C-containing substrate was found to include at least three fast equilibrium steps followed by two slow, irreversible steps and another equilibrium step. The second irreversible step was rate-limiting overall. By comparing data from Ogg1 intrinsic fluorescence traces and from accumulation of products of different types, the irreversible steps were attributed to two main chemical steps of the Ogg1-catalyzed reaction: cleavage of the N-glycosidic bond of the damaged nucleotide and β-elimination of its 3′-phosphate. The fast equilibrium steps were attributed to enzyme conformational changes during the recognition of 8-oxoG, and the final equilibrium, to binding of the reaction product by the enzyme. hOgg1 interacted with a substrate containing an aldehydic AP site very slowly, but the addition of 8-bromoguanine (8-BrG) greatly accelerated the reaction, which was best described by two initial equilibrium steps followed by one irreversible chemical step and a final product release equilibrium step. The irreversible step may correspond to β-elimination since it is the very step facilitated by 8-BrG.  相似文献   
115.
Double-stranded RNA viruses of about 35 nm in diameter were isolated from a mycocin-secreting strain of Cryptococcus aquaticus. A derivative of this strain, lacking small dsRNA, was non-mycocinogenic and sensitive to its own toxin. The killing pattern of this mycocin was restricted to some species of the Cystofilobasidiales clade. Despite the differences in genome size of dsRNA viruses in mycocinogenic strains of Cryptococcus aquaticus, Cystofilobasidium sp. CBS 6569, Cystofilobasidium bisporidii, Cystofilobasidium infirmominiatum, Trichosporon pullulans and Xanthophyllomyces dendrorhous and killing patterns of their mycocins, the viral genomes showed homology in hybridisation experiments.  相似文献   
116.
Amplification of MYCN is one of the most important prognostic markers for neuroblastoma and is correlated with rapid tumor progression and poor prognosis. MYCN belongs to the Myc/Max/Mad/Mnt network of proteins that regulate proliferation, apoptosis, and differentiation. It is well established that MYCN is downregulated during induced differentiation of neuroblastoma cells carrying an amplified MYCN gene, but very little is known about other components of the network, i.e., the Max, Mad, and Mnt proteins, during this process. In this study we show that Mad and Mnt expression was only modestly regulated in differentiating SK-N-BE(2) neuroblastoma cells, while MYCN was rapidly downregulated. This downregulation was reflected in a decreased MYCN/Max DNA-binding activity while the Mnt/Max binding did not change during differentiation. In parallel experiments we also analyzed the Myc/Max/Mad expression and DNA binding capacity during induced differentiation in the MYCN single copy neuroblastoma cell line SH-SY5Y. In this cell line only modest changes in expression of the components of the MYCN/Max/Mad/Mnt network was detected, but since the cell line expresses relatively low levels of MYCN and c-Myc, these changes might be of functional significance. Cell cycle analyses of SK-N-BE(2) demonstrated an increase in the G1-phase fraction after RA-treatment. These data show that the decreased MYCN expression and MYCN DNA-binding is correlated with retarded cell cycle progression. Furthermore, when Mad1 or Mnt was overexpressed in SK-N-BE(2) cells they retained the capacity to differentiate, underscoring the notion that MYCN downregulation, and not changes in Mad/Mnt expression, is essential for neuroblastoma cell differentiation.  相似文献   
117.
In the study, growth, proteolysis and antimicrobial activity of lactic acid bacteria were evaluated in skim milk medium supplemented with different concentration of whey protein concentrate (WPC 70). Lactobacillus helveticus (V3) showed maximum pH reduction with 1% WPC. Lactobacillus rhamnosus (NS4) also produced maximum lactic acid production and viable cells counts at 1 and 1.5% WPC, respectively. However, V3 showed maximum proteolytic activity with 1.5% WPC. Streptococcus thermophilus (MD2) was found to exhibit maximum antimicrobial activity with 1.5% WPC. Peptides formed during fermentation were purified by RP-HPLC and identified using RP-LC/MS analysis. Antimicrobial peptide was identified as lactoferrin, which was found in fermented milk supplemented with 1.5% WPC by NS4.  相似文献   
118.
Bacterial leaf blight (BB), caused by the bacterium Xanthomonas oryzae pv. Oryzae (Xoo), is the major constraint amongst rice diseases in India. CSR-30 is a very popular high-yielding, salt-tolerant Basmati variety widely grown in Haryana, India, but highly susceptible to BB. In the present study, we have successfully introgressed three BB resistance genes (Xa21, xa13 and xa5) from BB-resistant donor variety IRBB-60 into the BB-susceptible Basmati variety CSR-30 through marker-assisted selection (MAS) exercised with stringent phenotypic selection without compromising the Basmati traits. Background analysis using 131 polymorphic SSR markers revealed that recurrent parent genome (RPG) recovery ranged up to 97.1% among 15 BC3F1 three-gene-pyramided genotypes. Based on agronomic evaluation, BB reaction, aroma, percentage recovery of RPG, and grain quality evaluation, four genotypes, viz., IC-R28, IC-R68, IC-R32, and IC-R42, were found promising and advanced to BC3F2 generation.  相似文献   
119.
The study reports the growth, acidification and proteolysis of eight selected lactic acid bacteria in skim and soy milk. Angiotensin-converting enzyme inhibition and antimicrobial profiles of skim and soy milk fermented by the lactic acid bacteria were also determined. Among eight lactic cultures (S. thermophilus MD2, L. helveticus V3, L. rhamnosus NS6, L. rhamnosus NS4, L. bulgaricus NCDC 09, L. acidophilus NCDC 15, L. acidophilus NCDC 298 and L. helveticus NCDC 292) studied, L. bulgaricus NCDC 09 and S. thermophilus MD2 decreased the pH of skim and soy milk in greater extent. Acid production (i.e. titratable acidity) by L. bulgaricus NCDC 09 and L. helveticus V3 was higher than other strains. Higher viable counts were observed in S. thermophilus MD2 and L. helveticus V3. Higher proteolysis was exhibited by S. thermophilus MD2 and L. rhamnosus NS6 in both skim and soy milk. Milk fermented by S. thermophilus (MD2) exhibited highest angiotensin-converting enzyme inhibition. Antimicrobial activities of cell-free supernatant of milk fermented by S. thermophilus MD2 and L. helveticus V3 were higher. All the tested lactic acid bacteria performed better in skim milk as compared to soy milk.  相似文献   
120.
The development of network inference methodologies that accurately predict connectivity in dysregulated pathways may enable the rational selection of patient therapies. Accurately inferring an intracellular network from data remains a very challenging problem in molecular systems biology. Living cells integrate extremely robust circuits that exhibit significant heterogeneity, but still respond to external stimuli in predictable ways. This phenomenon allows us to introduce a network inference methodology that integrates measurements of protein activation from perturbation experiments. The methodology relies on logic-based networks to provide a predictive approximation of the transfer of signals in a network. The approach presented was validated in silico with a set of test networks and applied to investigate the epidermal growth factor receptor signaling of a breast epithelial cell line, MFC10A. In our analysis, we predict the potential signaling circuitry most likely responsible for the experimental readouts of several proteins in the mitogen-activated protein kinase and phosphatidylinositol-3 kinase pathways. The approach can also be used to identify additional necessary perturbation experiments to distinguish between a set of possible candidate networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号