首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   55篇
  2023年   3篇
  2022年   5篇
  2021年   14篇
  2020年   7篇
  2019年   11篇
  2018年   7篇
  2017年   12篇
  2016年   11篇
  2015年   24篇
  2014年   25篇
  2013年   95篇
  2012年   45篇
  2011年   45篇
  2010年   23篇
  2009年   26篇
  2008年   51篇
  2007年   43篇
  2006年   51篇
  2005年   37篇
  2004年   46篇
  2003年   43篇
  2002年   41篇
  2001年   13篇
  2000年   21篇
  1999年   17篇
  1998年   15篇
  1997年   6篇
  1996年   16篇
  1995年   15篇
  1994年   14篇
  1993年   9篇
  1992年   13篇
  1991年   16篇
  1990年   16篇
  1989年   16篇
  1988年   11篇
  1987年   6篇
  1986年   6篇
  1985年   11篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   8篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1975年   3篇
  1969年   2篇
  1962年   1篇
排序方式: 共有933条查询结果,搜索用时 15 毫秒
61.
Immunocytochemistry of myoepithelial cells in the salivary glands   总被引:3,自引:0,他引:3  
MECs are distributed on the basal aspect of the intercalated duct and acinus of human and rat salivary glands. However, they do not occur in the acinus of rat parotid glands, and sometimes occur in the striated duct of human salivary glands. MECs, as the name implies, have structural features of both epithelial and smooth muscle cells. They contract by autonomic nervous stimulation, and are thought to assist the secretion by compressing and/or reinforcing the underlying parenchyma. MECs can be best observed by immunocytochemistry. There are three types of immunocytochemical markers of MECs in salivary glands. The first type includes smooth muscle protein markers such as -SMA, SMMHC, h-caldesmon and basic calponin, and these are expressed by MECs and the mesenchymal vasculature. The second type is expressed by MECs and the duct cells and includes keratins 14, 5 and 17, 1β1 integrin, and metallothionein. Vimentin is the third type and, in addition to MECs, is expressed by the mesenchymal cells and some duct cells. The same three types of markers are used for studying the developing gland.

Development of MECs starts after the establishment of an extensively branched system of cellular cords each of which terminates as a spherical cell mass, a terminal bud. The pluripotent stem cell generates the acinar progenitor in the terminal bud and the ductal progenitor in the cellular cord. The acinar progenitor differentiates into MECs, acinar cells and intercalated duct cells, whereas the ductal progenitor differentiates into the striated and excretory duct cells. Both in the terminal bud and in the cellular cord, the immediate precursors of all types of the epithelial cells appear to express vimentin. The first identifiable MECs are seen at the periphery of the terminal bud or the immature acinus (the direct progeny of the terminal bud) as somewhat flattened cells with a single cilium projecting toward them. They express vimentin and later -SMA and basic calponin. At the next developmental stage, MECs acquire cytoplasmic microfilaments and plasmalemmal caveolae but not as much as in the mature cell. They express SMMHC and, inconsistently, K14. This protein is consistently expressed in the mature cell. K14 is expressed by duct cells, and vimentin is expressed by both mesenchymal and epithelial cells.

After development, the acinar progenitor and the ductal progenitor appear to reside in the acinus/intercalated duct and the larger ducts, respectively, and to contribute to the tissue homeostasis. Under unusual conditions such as massive parenchymal destruction, the acinar progenitor contributes to the maintenance of the larger ducts that result in the occurrence of striated ducts with MECs. The acinar progenitor is the origin of salivary gland tumors containing MECs. MECs in salivary gland tumors are best identified by immunocytochemistry for -SMA. There are significant numbers of cells related to luminal tumor cells in the non-luminal tumor cells that have been believed to be neoplastic MECs.  相似文献   

62.
Extracellular ATP synthesis on human umbilical vein endothelial cells (HUVECs) was examined, and it was found that HUVECs possess high ATP synthesis activity on the cell surface. Extracellular ATP generation was detected within 5 s after addition of ADP and inorganic phosphate and reached a maximal level at 15 s. This type of ATP synthesis was almost completely inhibited by mitochondrial H(+)-ATP synthase inhibitors (e.g., efrapeptins, resveratrol, and piceatannol), which target the F(1) catalytic domain. Oligomycin and carbonyl cyanide m-chlorophenylhydrazone, but not potassium cyanide, also inhibited extracellular ATP synthesis on HUVECs, suggesting that cell surface ATP synthase employs the transmembrane electrochemical potential difference of protons to synthesize ATP as well as mitochondrial H(+)-ATP synthase. The F(1)-targeting H(+)-ATP synthase inhibitors markedly inhibited the proliferation of HUVECs, but intracellular ATP levels in HUVECs treated with these inhibitors were only slightly affected, as shown by comparison with the control cells. Interestingly, piceatannol inhibited only partially the activation of Syk (a nonreceptor tyrosine kinase), which has been shown to play a role in a number of endothelial cell functions, including cell growth and migration. These findings suggest that H(+)-ATP synthase-like molecules on the surface of HUVECs play an important role not only in extracellular ATP synthesis but also in the proliferation of HUVECs. The present results demonstrate that the use of small molecular H(+)-ATP synthase inhibitors targeting the F(1) catalytic domain may lead to significant advances in potential antiangiogenic cancer therapies.  相似文献   
63.
Under serum deprivation F-MEL cells die by apoptosis. We previously showed that apoptosis induced by serum deprivation was suppressed by inhibition of c-jun expression using antisense c-jun transfected cell line, c-junAS. To elucidate the underlying mechanisms we examined the species which is responsible for apoptosis under serum deprivation. When catalase and N-acetyl-L-cysteine (NAC) were included in the medium, cell death under serum deprivation was effectively suppressed in F-MEL cells. Intracellular generation of hydrogen peroxide (H(2)O(2)) was also detected under serum deprivation in parental F-MEL cells, but it was suppressed in c-junAS (+) cells, in which antisense c-jun was expressed and c-Jun protein expression was inhibited as shown by Western blot. When H(2)O(2) was directly applied to F-MEL cells at 3 mM, apoptotic cell death was induced, whereas it was suppressed in c-junAS (+) cells. Induction of apoptosis by H(2)O(2) and its inhibition by antisense c-jun was confirmed by detection of internucleosomal fragmentation of DNA, TdT-mediated dUTP nick end labeling (TUNEL)-positive cells and morphological alteration of nuclei. These results indicate that apoptosis induced by serum deprivation in F-MEL cells is mediated by H(2)O(2) and c-jun expression is essential to apoptosis induced by H(2)O(2) in F-MEL cells.  相似文献   
64.
Iino S  Sudo T  Niwa T  Fukasawa T  Hidaka H  Niki I 《FEBS letters》2000,479(1-2):46-50
The aim of this study was to investigate possible involvement of annexin XI in the insulin secretory machinery. In fluorescence immunocytochemistry, annexin XI was found in the cytoplasm of pancreatic endocrine cells and a pancreatic beta-cell line, MIN6, in a granular pattern. MIN6 cells also possessed weak and diffused annexin XI immunoreactivity in the cytoplasm. Immunoelectron microscopy revealed annexin XI in the insulin granules. Insulin secretion from streptolysin-O-permeabilized MIN6 cells was inhibited by anti-annexin XI antibody, when the release was stimulated by either Ca2+ or GTP-gammaS, but not by a protein kinase C-activating phorbol ester. Inhibition of insulin release by anti-annexin XI antibody was reproduced in permeabilized rat islets. These findings suggest that annexin XI may be involved in the regulation of insulin secretion from the pancreatic beta-cells.  相似文献   
65.
The reorganization of vascular cylinders of pea (Pisum sativum, cv. Alaska) primary roots following the formation of vascular cavities was examined by light and electron microscopy. Cavities usually began forming ~20 mm from the root tip and were continuous to ~90 mm from the tips in roots 150 mm long, where they began filling with specialized parenchyma cells (SP cells). SP cells were usually produced by enlargement of parenchymous cells of the primary xylem at cavity margins. Depending on the extent and shape of the cavity, they were also sometimes produced by primary phloem parenchyma and early derivatives of the vascular cambium. Enlargement and some divisions of SP cells continued until a cavity was completely filled by them. SP cells proceeded through a series of cytoplasmic changes as they developed. First the cytoplasmic layer became thicker and more electron dense than surrounding cells. As SP cells enlarged there was an increase in vesicular traffic and the cytoplasm became less electron dense. Ultimately the cytoplasm thinned further, organelles degenerated, and the tonoplast sometimes broke down. SP cells did not form secondary walls. X-ray microanalysis revealed that SP cells accumulated potassium and rubidium to the same degree as cortical and xylem parenchyma cells and to a greater degree than immature secondary and late-maturing tracheary elements.  相似文献   
66.
When inappropriate DNA structures arise, they are sensed by DNA structure-dependent checkpoint pathways and subsequently repaired. Recruitment of checkpoint proteins to such structures precedes recruitment of proteins involved in DNA metabolism. Thus, checkpoints can regulate DNA metabolism. We show that fission yeast Rad9, a 9-1-1 heterotrimeric checkpoint-clamp component, is phosphorylated by Hsk1(Cdc7), the Schizosaccharomyces pombe?Dbf4-dependent kinase (DDK) homolog, in response to replication-induced DNA damage. Phosphorylation of Rad9 disrupts its interaction with replication protein A (RPA) and is dependent on 9-1-1 chromatin loading, the Rad9-associated protein Rad4/Cut5(TopBP1), and prior phosphorylation by Rad3(ATR). rad9 mutants defective in DDK phosphorylation show wild-type checkpoint responses but abnormal DNA repair protein foci and decreased viability after replication stress. We propose that Rad9 phosphorylation by DDK releases Rad9 from DNA damage sites to facilitate DNA repair.  相似文献   
67.
It has been hypothesized that oxidative stress plays a key role in aging. In order to elucidate the role of the antioxidant network — including α-tocopherol (αT) and αT transfer protein — in aging in vivo, α-tocopherol transfer protein knockout (αTTP?/?) mice were fed a vitamin-E-depleted diet, and wild-type (WT) mice were fed a diet containing 0.002 wt.% αT from the age of 3 months to 1 1/2 years. The lipid oxidation markers total hydroxyoctadecadienoic acid (tHODE) and 8-iso-prostaglandin F2α, and antioxidant levels in the blood, liver and brain were measured at 3, 6, 12 and 18 months. tHODE levels in the plasma of αTTP?/? mice were elevated at 6 months compared to 3 months, and were significantly higher those in WT mice, although they decreased thereafter. On the other hand, tHODE levels in the liver and brain were constantly higher in αTTP?/? mice than in WT mice. Motor activities decreased with aging in both mouse types; however, those in the αTTP?/? mice were lower than those in the WT mice. It is intriguing to note that motor activities were significantly correlated with the stereoisomer ratio (Z,E/E,E) of HODE, which is a measure of antioxidant capacity in vivo, in the plasma, in the liver and even in the brain, but not with other factors such as antioxidant levels.In summary, using the biomarker tHODE and its stereoisomer ratio, we demonstrated that αT depletion was associated with a decrease in motor function, and that this may be primarily attributable to a decrease in the total antioxidant capacity in vivo.  相似文献   
68.
69.
There are many techniques for evaluating melanosome transfer to keratinocytes but the spectrophotometric quantification of melanosomes incorporated by keratinocyte phagocytosis has not been previously reported. Here we describe a new method that allows the spectrophotometric visualization of melanosome uptake by normal human keratinocytes in culture. Fontana-Masson staining of keratinocytes incubated with isolated melanosomes showed the accumulation of incorporated melanosomes in the perinuclear areas of keratinocytes within 48 h. Electron microscopic observations of melanosomes ingested by keratinocytes revealed that many phagosomes containing clusters of melanosomes or their fragments were localized in the perinuclear area. A known inhibitor of keratinocyte phagocytosis which inhibits protease-activated receptor-2, i.e., soybean trypsin inhibitor, decreased melanosome uptake by keratinocytes in a dose-dependent manner. These data suggest that our method is a useful model to quantitate keratinocyte phagocytosis of melanosomes visually in vitro.  相似文献   
70.
Unlike known Chlamydomonas species, Chlamydomonas sp. strain W80, which was isolated from seawater, shows tolerance to salt and cadmium. In this study, we purified and characterized cysteine protease from Chlamydomonas sp. strain W80 cells and also investigated their response to oxidative stress. The protease was purified 2760-fold with a yield of 2.6% by five steps of successive chromatography. This protease had a pH optimum of 8.0 and was specific only for tert -butoxycarbonyl (Boc)-Leu-Arg-Arg-4-methylcoumaryl-7-amide (MCA) (Boc-LRR-MCA) and Boc-Val-Leu-Lys-MCA as substrates among eight fluorogenic peptides tested. The K m value was estimated to be 44.4 μ M for Boc-LRR-MCA. The molecular weight of the protease was determined to be approximately 102 kDa by Superdex 200 gel filtration and 60 kDa by SDS–PAGE, suggesting that this enzyme is a dimer. This enzyme was inhibited by the cysteine protease inhibitors leupeptin and N-ethylmaleimide but neither inhibited by phenylmethylsulfonyl fluoride or ethylenediaminetetraacetic acid nor activated by metal cations. These findings indicate that this enzyme is likely a cysteine protease. When strain W80 was grown under oxidative stress in the presence of methyl viologen and cadmium chloride, cysteine protease activity was about 30–90% higher than normal, whereas no changes were observed in carbon enrichment or senescence. It is likely that this protease is upregulated in response to oxidative stress and plays a role in the maintenance of cell metabolism under oxidative stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号