首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   24篇
  2024年   2篇
  2023年   9篇
  2022年   5篇
  2021年   21篇
  2020年   7篇
  2019年   14篇
  2018年   18篇
  2017年   12篇
  2016年   19篇
  2015年   30篇
  2014年   38篇
  2013年   31篇
  2012年   37篇
  2011年   38篇
  2010年   21篇
  2009年   14篇
  2008年   24篇
  2007年   15篇
  2006年   12篇
  2005年   14篇
  2004年   13篇
  2003年   13篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1989年   1篇
排序方式: 共有421条查询结果,搜索用时 15 毫秒
131.
An increasing number of cytosolic proteins are shown to interact with membrane lipids during diverse cellular processes, but computational prediction of these proteins and their membrane binding behaviors remains challenging. Here, we introduce a new combinatorial computation protocol for systematic and robust functional prediction of membrane-binding proteins through high throughput homology modeling and in-depth calculation of biophysical properties. The approach was applied to the genomic scale identification of the AP180 N-terminal homology (ANTH) domain, one of the modular lipid binding domains, and prediction of their membrane binding properties. Our analysis yielded comprehensive coverage of the ANTH domain family and allowed classification and functional annotation of proteins based on the differences in local structural and biophysical features. Our analysis also identified a group of plant ANTH domains with unique structural features that may confer novel functionalities. Experimental characterization of a representative member of this subfamily confirmed its unique membrane binding mechanism and unprecedented membrane deforming activity. Collectively, these studies suggest that our new computational approach can be applied to genome-wide functional prediction of other lipid binding domains.  相似文献   
132.
Sustained elevation of intracellular calcium by Ca2+ release–activated Ca2+ channels is required for lymphocyte activation. Sustained Ca2+ entry requires endoplasmic reticulum (ER) Ca2+ depletion and prolonged activation of inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ release channels. However, a major isoform in lymphocyte ER, IP3R1, is inhibited by elevated levels of cytosolic Ca2+, and the mechanism that enables the prolonged activation of IP3R1 required for lymphocyte activation is unclear. We show that IP3R1 binds to the scaffolding protein linker of activated T cells and colocalizes with the T cell receptor during activation, resulting in persistent phosphorylation of IP3R1 at Tyr353. This phosphorylation increases the sensitivity of the channel to activation by IP3 and renders the channel less sensitive to Ca2+-induced inactivation. Expression of a mutant IP3R1-Y353F channel in lymphocytes causes defective Ca2+ signaling and decreased nuclear factor of activated T cells activation. Thus, tyrosine phosphorylation of IP3R1-Y353 may have an important function in maintaining elevated cytosolic Ca2+ levels during lymphocyte activation.  相似文献   
133.
Many significant bacterial pathogens use a type III secretion system to inject effector proteins into host cells to disrupt specific cellular functions, enabling disease progression. The injection of these effectors into host cells is often dependent on dedicated chaperones within the bacterial cell. In this report, we demonstrate that the enteropathogenic Escherichia coli (EPEC) chaperone CesT interacts with a variety of known and putative type III effector proteins. Using pull-down and secretion assays, a degenerate CesT binding domain was identified within multiple type III effectors. Domain exchange experiments between selected type III effector proteins revealed a modular nature for the CesT binding domain, as demonstrated by secretion, chaperone binding, and infection assays. The CesT-interacting type III effector Tir, which is crucial for in vivo intestinal colonization, had to be expressed and secreted for efficient secretion of other type III effectors. In contrast, the absence of other CesT-interacting type III effectors did not abrogate effector secretion, indicating an unexpected hierarchy with respect to Tir for type III effector delivery. Coordinating the expression of other type III effectors with cesT in the absence of tir partially restored total type III effector secretion, thereby implicating CesT in secretion events. Collectively, the results suggest a coordinated mechanism involving both Tir and CesT for type III effector injection into host cells.  相似文献   
134.
CCK-1-receptor-deficient Otsuka Long-Evans Tokushima fatty (OLETF) rats are hyperphagic and exhibit a greater preference for sucrose compared with lean controls [Long-Evans Tokushima Otsuka (LETO)]. To directly assess motivation to work for sucrose reward in this model of obesity and type 2 diabetes, we examined the operant performance of OLETF rats at nondiabetic and prediabetic stages (14 and 24 wk of age, respectively) on fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement. To evaluate the involvement of dopamine systems, the effects of the D1 receptor antagonist SCH23390 (100 and 200 nmol/kg ip) and the D2 receptor antagonist raclopride (200 and 400 nmol/kg ip), were also tested on PR responding for sucrose. Compared with age-matched LETO rats, 14-wk-old OLETF rats emitted more licks on the "active" empty spout operant on the FR-10 schedule of reinforcement to obtain 0.01 M and 0.3 M sucrose and completed higher ratio requirements on the PR schedule to gain access to 0.3 M and 1.0 M sucrose. At 24 wk, this effect was limited to 1.0 M sucrose. Both antagonists were potent in reducing operant responding to 0.3 M sucrose in both strains at both ages, and there was no strain effect to SCH23390 at either age. OLETF rats, on the other hand, showed an increased sensitivity to the higher dose of raclopride, resulting in reduced responding to sucrose reinforcement at 24 wk. Taken together, these findings provide the first direct evidence for an increased motivation for sucrose reward in the OLETF rats and suggest altered D2 receptor regulation with the progression of obesity and prediabetes.  相似文献   
135.
[Cu2+•Cys-Gly-His-Lys] stimulates thermolysin (TLN) activity at low concentration (below 10 μM) and inhibits the enzyme at higher concentration, with binding affinities of 2.0 and 4.9 μM, respectively. The metal-free Cys-Gly-His-Lys peptide also stimulates TLN activity, with an apparent binding affinity of 2.2 μM. Coordination of copper through deprotonated imine nitrogens, the histidyl nitrogen, and the free N-terminal amino group is consistent with the characteristic absorption spectrum of a Cu2+–amino-terminal copper and nickel binding motif (λ max ∼ 525 nm). The lack of thiol coordination is suggested by both the absence of a thiol to Cu2+ charge transfer band and electrochemical studies, since the electrode potential (vs. Ag/AgCl) 0.84 V (ΔE = 92 mV) for the Cu3+/2+ redox couple obtained for [Cu2+•Cys-Gly-His-Lys] was found to be in close agreement with that of a related complex [Cu2+•Lys-Gly-His-Lys]+ (0.84 V, ΔE = 114 mV). The N-terminal cysteine appears to be available as a zinc-anchoring residue and plays a critical functional role since the [Cu2+•Lys-Gly-His-Lys]+ homologue exhibits neither stimulation nor inhibition of TLN. Under oxidizing conditions (ascorbate/O2) the catalyst is shown to mediate the complete irreversible inactivation of TLN at concentrations where enzyme activity would otherwise be stimulated. The observed rate constant for inactivation of TLN activity was determined as k obs = 7.7 × 10−2 min−1, yielding a second-order rate constant of (7.7 ± 0.9) × 104 M−1 min−1. Copper peptide mediated generation of reactive oxygen species that subsequently modify active-site residues is the most likely pathway for inactivation of TLN rather than cleavage of the peptide backbone.  相似文献   
136.
Li G  Zhang H  Sader F  Vadhavkar N  Njus D 《Biochemistry》2007,46(23):6978-6983
At alkaline pH, 4-methylcatechol oxidizes more rapidly than the related catecholamines: dopamine, norepinephrine, and epinephrine. This oxidation is not inhibited by superoxide dismutase or catalase, indicating that O2 itself is the oxidant, but the reduction potential of O2/O2-* is too low for it to oxidize 4-methylcatechol directly. Instead, O2 oxidizes the 4-methylcatechol semiquinone, which is formed by comproportionation of 4-methylcatechol and its o-quinone. Aniline reacts very quickly with the o-quinone and thus stops the comproportionation reaction that oxidizes 4-methylcatechol to the semiquinone. Oxidation of 4-methylcatechol then requires superoxide, and in the presence of aniline, oxidation of 4-methylcatechol by O2 is inhibited by superoxide dismutase. When catecholamines oxidize, the side chain amine inserts into the catechol o-quinone, forming a bicyclic compound. By eliminating the quinone, this ring closure prevents comproportionation and the consequent oxidation of catecholamines by O2. It also prevents reaction of the quinone with other compounds and the formation of potentially toxic products.  相似文献   
137.
Cyclic 3′5′ adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.  相似文献   
138.
Despite the identification of many factors that facilitate ribosome assembly, the molecular mechanisms by which they drive ribosome biogenesis are poorly understood. Here, we analyze the late stages of assembly of the 50S subunit using Bacillus subtilis cells depleted of RbgA, a highly conserved GTPase. We found that RbgA-depleted cells accumulate late assembly intermediates bearing sub-stoichiometric quantities of ribosomal proteins L16, L27, L28, L33a, L35 and L36. Using a novel pulse labeling/quantitative mass spectrometry technique, we show that this particle is physiologically relevant and is capable of maturing into a complete 50S particle. Cryo-electron microscopy and chemical probing revealed that the central protuberance, the GTPase associating region and tRNA-binding sites in this intermediate are unstructured. These findings demonstrate that key functional sites of the 50S subunit remain unstructured until late stages of maturation, preventing the incomplete subunit from prematurely engaging in translation. Finally, structural and biochemical analysis of a ribosome particle depleted of L16 indicate that L16 binding is necessary for the stimulation of RbgA GTPase activity and, in turn, release of this co-factor, and for conversion of the intermediate to a complete 50S subunit.  相似文献   
139.
140.
Sophora interrupta belongs to the family of Fabaceae and the species in this genus have a diverse medicinal importance as a folk medicine for preventing many ailments including cancer. In order to evaluate the anticancer activity of S.interrupta, we have performed in vitro anti-oxidant, anti-inflammatory, anti-proliferative, and cell based anticancer activity in MCF-7 and PC-3 cell lines. Secondary metabolites of S.interrupta were used to identify anticancer compounds using Open Eye software. The antioxidant activity of the S.interrupta root ethylacetate (SEA) extract at 100 µg/ml is equal to that of ascorbic acid at 50 µg/ml. The antiinflammatory activity of SEA is half of that of diclofenac at 50 µg/ml. Anticancer activity was detected by measuring the mitochondrial dehydrogenase activity (MTT assay). The half maximal inhibitory concentrations (IC50) for MCF-7 and PC-3 cell lines are 250 and 700 µg/ml respectively. This was supported by the morphological changes such as membrane blebbing, cell detachment and rounded cell morphology when compared to the parental cells. In addition, we observed few green cells (live) over red cells (dead) based on the uptake of acridine orange and ethidium bromide dyes. Kaempferol-3-O-b-D-glucopyranoside, a Secondary metabolite of S.interrupta form 6 hydrogen bond interactions with Arg 202, Gln 207, Gly 227, Gly 229, Thr 231 and Ala 232 human DEAD box RNA helicase, DDX3 protein and is equivalent to crystal structure of adenosine mono phosphate to DDX3. Overall, it suggests that the SEA extract has anticancer compounds, and it can be used to enhance death receptor mediated cancer cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号