首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   24篇
  2024年   2篇
  2023年   9篇
  2022年   6篇
  2021年   21篇
  2020年   7篇
  2019年   14篇
  2018年   18篇
  2017年   12篇
  2016年   19篇
  2015年   30篇
  2014年   38篇
  2013年   31篇
  2012年   37篇
  2011年   38篇
  2010年   21篇
  2009年   14篇
  2008年   24篇
  2007年   15篇
  2006年   12篇
  2005年   14篇
  2004年   13篇
  2003年   13篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1989年   1篇
排序方式: 共有422条查询结果,搜索用时 15 毫秒
11.
What is the relationship between the complexity and the fitness of evolved organisms, whether natural or artificial? It has been asserted, primarily based on empirical data, that the complexity of plants and animals increases as their fitness within a particular environment increases via evolution by natural selection. We simulate the evolution of the brains of simple organisms living in a planar maze that they have to traverse as rapidly as possible. Their connectome evolves over 10,000s of generations. We evaluate their circuit complexity, using four information-theoretical measures, including one that emphasizes the extent to which any network is an irreducible entity. We find that their minimal complexity increases with their fitness.  相似文献   
12.
A role for HflX in 50S-biogenesis was suggested based on its similarity to other GTPases involved in this process. It possesses a G-domain, flanked by uncharacterized N- and C-terminal domains. Intriguingly, Escherichia coli HflX was shown to hydrolyze both GTP and adenosine triphosphate (ATP), and it was unclear whether G-domain alone would explain ATP hydrolysis too. Here, based on structural bioinformatics analysis, we suspected the possible existence of an additional nucleotide-binding domain (ND1) at the N-terminus. Biochemical studies affirm that this domain is capable of hydrolyzing ATP and GTP. Surprisingly, not only ND1 but also the G-domain (ND2) can hydrolyze GTP and ATP too. Further; we recognize that ND1 and ND2 influence each other’s hydrolysis activities via two salt bridges, i.e. E29-R257 and Q28-N207. It appears that the salt bridges are important in clamping the two NTPase domains together; disrupting these unfastens ND1 and ND2 and invokes domain movements. Kinetic studies suggest an important but complex regulation of the hydrolysis activities of ND1 and ND2. Overall, we identify, two separate nucleotide-binding domains possessing both ATP and GTP hydrolysis activities, coupled with an intricate inter-domain regulation for Escherichia coli HflX.  相似文献   
13.
14.
15.
Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.  相似文献   
16.
In February 2018, the Melanoma Research Foundation and the Moffitt Cancer Center hosted the Second Summit on Melanoma Central Nervous System (CNS) Metastases in Tampa, Florida. In this white paper, we outline the current status of basic science, translational, and clinical research into melanoma brain metastasis development and therapeutic management. We further outline the important challenges that remain for the field and the critical barriers that need to be overcome for continued progress to be made in this clinically difficult area.  相似文献   
17.
18.
Tau protein, the major player in Alzheimer’s disease forms neurofibrillary tangles in elderly people. Bramhi (Baccopa Monniera) is often used as an ayurvedic treatment for Alzheimer''s disease. Therefore it is of interest to study the interaction of compounds derived from Baccopa with the Tau protein involved in tangle formation. We show that compounds such as bacopaside II, bacopaside XII, and nicotine showed optimal binding features with the R2 repeat domain of hyperphosphorylated tau protein for further consideration in the context of Alzheimer''s disease (AD).  相似文献   
19.
Bacteria show asymmetric subcellular distribution of many proteins involved in diverse cellular processes such as chemotaxis, motility, actin polymerization, chromosome partitioning and cell division. In many cases, the specific subcellular localization of these proteins is critical for proper regulation and function. Although cellular organization of the bacterial cell clearly plays an important role in cell physiology, systematic studies to uncover asymmetrically distributed proteins have not been reported previously. In this study, we undertook a proteomics approach to uncover polar membrane proteins in Escherichia coli. We identified membrane proteins enriched in E. coli minicells using a combination of two-dimensional electrophoresis and mass spectrometry. Among a total of 173 membrane protein spots that were consistently detected, 36 spots were enriched in minicell membranes, whereas 15 spots were more abundant in rod cell membranes. The minicell-enriched proteins included the inner membrane proteins MCPs, AtpA, AtpB, YiaF and AcrA, the membrane-associated FtsZ protein and the outer membrane proteins YbhC, OmpW, Tsx, Pal, FadL, OmpT and BtuB. We immunolocalized two of the minicell-enriched proteins, OmpW and YiaF, and showed that OmpW is a bona fide polar protein whereas YiaF displays a patchy membrane distribution with a polar and septal bias.  相似文献   
20.
Our discovery of rapid down-regulation of human bilirubin UDP-glucuronosyltransferase (UGT) in colon cell lines that was transient and irreversible following curcumin- and calphostin-C-treatment, respectively, suggested phosphorylation event(s) were involved in activity. Likewise, bilirubin-UGT1A1 expressed in COS-1 cells was inhibited by curcumin and calphostin-C. Because calphostin-C is a highly specific protein kinase C (PKC) inhibitor, we examined and found 4 to 5 predicted PKC phosphorylation sites in 11 UGTs examined. UGT1A1 incorporated [33P]orthophosphate, which was inhibited by calphostin-C. Also triple mutant, T75A/T112A/S435G-UGT1A1, at predicted PKC sites failed to incorporate [33P]orthophosphate. Individual or double mutants exhibited dominant-negative, additive, or no effect, while the triple mutant retained 10-15% activity towards bilirubin and two xenobiotics. Compared to wild-type, S435G and T112A/S435G shifted pH-optimum for eugenol, but not for bilirubin or anthraflavic acid, toward alkaline and acid conditions, respectively. This represents the first evidence that a UGT isozyme requires phosphorylation for activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号