首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19060篇
  免费   939篇
  国内免费   27篇
  2023年   164篇
  2022年   306篇
  2021年   720篇
  2020年   426篇
  2019年   449篇
  2018年   662篇
  2017年   619篇
  2016年   805篇
  2015年   921篇
  2014年   1160篇
  2013年   1600篇
  2012年   1700篇
  2011年   1500篇
  2010年   876篇
  2009年   754篇
  2008年   879篇
  2007年   850篇
  2006年   721篇
  2005年   655篇
  2004年   523篇
  2003年   430篇
  2002年   382篇
  2001年   314篇
  2000年   289篇
  1999年   257篇
  1998年   104篇
  1997年   81篇
  1996年   88篇
  1995年   80篇
  1994年   61篇
  1993年   58篇
  1992年   158篇
  1991年   145篇
  1990年   114篇
  1989年   85篇
  1988年   126篇
  1987年   99篇
  1986年   83篇
  1985年   85篇
  1984年   81篇
  1983年   48篇
  1982年   42篇
  1981年   47篇
  1980年   44篇
  1979年   56篇
  1978年   35篇
  1977年   43篇
  1976年   31篇
  1975年   29篇
  1974年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Outbreak of Human Herpes virus-5 (HHV-5) infection in emerging countries has raised worldwide health concern owing to prevalence of congenital impairments and life threatening consequences in immunocompromised individuals. Thus, there lies an impending need to develop vaccine against HHV-5. HHV-5 enters into host cells with the help of necessary components glycoprotein B (gB) and H/L. In this study, the conformational linear B-cell and T-cell epitopes for gB of HHV-5 have been predicted using conformational approaches, for their possible collective use as vaccine candidates. We examined epitope’s interactions with major histocompatibility complexes using molecular docking and also investigated their stable binding with specific toll like receptor-2 (TLR2), present on host cells during HHV-5 infection. Predicted MHC-I epitope ‘LVAIAVVII’ with high antigenicity and large coverage of HLA alleles was found to superimpose on MHC-II epitope (Rank 1) and was also identified to be the core sequence of putative B cell epitope ‘ILVAIAVVIITYLI’. Resulting epitope was found to have consistent interaction with TLR2 during long term (100?ns) MD run. We also validated this nonamer epitope for its dissimilarity with human genome and high population coverage, suggesting it to be a potential vaccine candidate with higher coverage for both the MHC alleles of Indian population.

Communicated by Ramaswamy H. Sarma  相似文献   

952.
Visceral leishmaniasis (VL) is a deadly parasitic infection which affects poorest to poor population living in the endemic countries. Increasing resistant to existing drugs, disease burden and a significant number of deaths, necessitates the need for an effective vaccine to prevent the VL infection. This study employed a combinatorial approach to develop a multi-epitope subunit vaccine by exploiting Leishmania donovani membrane proteins. Cytotoxic T- and helper T-lymphocyte binding epitopes along with suitable adjuvant and linkers were joined together in a sequential manner to design the subunit vaccine. The occurrence of B-cell and IFN-γ inducing epitopes approves the ability of subunit vaccine to develop humoral and cell-mediated immune response. Physiochemical parameters of vaccine protein were also assessed followed by homology modeling, model refinement and validation. Moreover, disulfide engineering was performed for the increasing stability of the designed vaccine and molecular dynamics simulation was performed for the comparative stability purposes and to conform the geometric conformations. Further, molecular docking and molecular dynamics simulation study of a mutated and non-mutated subunit vaccine against TLR-4 immune receptor were performed and respective complex stability was determined. In silico cloning ensures the expression of designed vaccine in pET28a(+) expression vector. This study offers a cost-effective and time-saving way to design a novel immunogenic vaccine that could be used to prevent VL infection.

Communicated by Ramaswamy H. Sarma  相似文献   

953.

Iron deficiency anaemia is a major challenge among consumers in developing countries. Given the deficiency of iron in the diet, there is an urgent need to devise a strategy for providing the required iron in the daily diet to counter the iron deficiency anaemia. We propose that iron biofortification of wheat (Triticum aestivum L.) through seed priming would be an innovative strategy to address this issue. This investigation attempts to find the interaction of iron oxide nanoparticles on germination, growth parameters and accumulation of grain iron in two contrasting wheat genotypes WL711 (low-iron genotype) and IITR26 (high-iron genotype). Wheat seeds were primed with different concentrations of iron oxide nanoparticles in the range of 25–600 ppm, resulting in differential accumulation of grain iron contents. We observed a pronounced increase in germination percentage and shoot length at 400 and 200 ppm treatment concentrations in IITR26 and WL711 genotypes, respectively. Intriguingly, the treatment concentration of 25 ppm demonstrated higher accumulation with a significant increase in grain iron contents to 45.7% in IITR26 and 26.8% in WL711 genotypes, respectively. Seed priming represents an innovative and user-friendly approach for wheat biofortification which triggers iron acquisition and accumulation in grains.

  相似文献   
954.

Soil salinity is a major limiting factor for crop productivity worldwide and is continuously increasing owing to climate change. A wide range of studies and practices have been performed to induce salt tolerance mechanisms in plants, but their result in crop improvement has been limited due to lack of time and money. In the current scenario, there is increasing attention towards habitat-imposed plant stress tolerance driven by plant-associated microbes, either rhizospheric and/or endophytic. These microbes play a key role in protecting plants against various environmental stresses. Therefore, the use of plant growth-promoting microbes in agriculture is a low-cost and eco-friendly technology to enhance crop productivity in saline areas. In the present review, the authors describe the functionality of endophytic bacteria and their modes of action to enhance salinity tolerance in plants, with special reference to osmotic and ionic stress management. There is concrete evidence that endophytic bacteria serve host functions, such as improving osmolytes, anti-oxidant and phytohormonal signaling and enhancing plant nutrient uptake efficiency. More research on endophytes has enabled us to gain insights into the mechanism of colonization and their interactions with plants. With this information in mind, the authors tried to solve the following questions: (1) how do benign endophytes ameliorate salt stress in plants? (2) What type of physiological changes incur in plants under salt stress conditions? And (3), what type of determinants produced by endophytes will be helpful in plant growth promotion under salt stress?

  相似文献   
955.
956.
Glomerular podocytes are the major components of the renal filtration barrier, and altered podocyte permselectivity is a key event in the pathogenesis of proteinuric conditions. Clinical conditions such as ischemia and sleep apnea and extreme physiological conditions such as high-altitude sickness are presented with renal hypoxia and are associated with significant proteinuria. Hypoxia is considered as an etiological factor in the progression of acute renal injury. A sustained increase in hypoxia-inducible factor 1α (HIF1α) is a major adaptive stimulus to the hypoxic conditions. Although the temporal association between hypoxia and proteinuria is known, the mechanism by which hypoxia elicits proteinuria remains to be investigated. Furthermore, stabilization of HIF1α is being considered as a therapeutic option to treat anemia in patients with chronic kidney disease. Therefore, in this study, we induced stabilization of HIF1α in glomerular regions in vivo and in podocytes in vitro upon exposure to cobalt chloride. The elevated HIF1α expression is concurrence with diminished expression of nephrin and podocin, podocyte foot-processes effacement, and significant proteinuria. Podocytes exposed to cobalt chloride lost their arborized morphology and cell-cell connections and also displayed cytoskeletal derangements. Elevation in expression of HIF1α is in concomitance with loss of nephrin and podocin in patients with diabetic nephropathy and chronic kidney disease. In summary, the current study suggests that HIF1α stabilization impairs podocyte function vis-à-vis glomerular permselectivity.  相似文献   
957.
958.
Protection of telomere 1 (POT1) is one of the key components of shelterin complex, implicated in maintaining the telomere homeostasis, and thus stability of the eukaryotic genome. A large number of non-synonymous single nucleotide polymorphisms (nsSNPs) in the POT1 gene have been reported to cause varieties of human diseases, including cancer. In recent years, a number of mutations in POT1 has been markedly increased, and interpreting the effect of these large numbers of mutations to understand the mechanism of associated diseases seems impossible using experimental approaches. Herein, we employ varieties of computational methods such as PROVEAN, PolyPhen-2, SIFT, PoPMuSiC, SDM2, STRUM, and MAESTRO to identify the effects of 387 nsSNPs on the structure and function of POT1 protein. We have identified about 183 nsSNPs as deleterious and termed them as “high-confidence nsSNPs.” Distribution of these high-confidence nsSNPs demonstrates that the mutation in oligonucleotide binding domain 1 is highly deleterious (one in every three nsSNPs), and high-confidence nsSNPs show a strong correlation with residue conservation. The structure analysis provides a detailed insights into the structural changes occurred in consequence of conserved mutations which lead to the cancer progression. This study, for the first time, offers a newer prospective on the role of POT1 mutations on the structure, function, and their relation to associated diseases.  相似文献   
959.
The human gut harbors diverse bacterial species in the gut, which play an important role in the metabolism of food and host health. Recent studies have also revealed their role in altering the pharmacological properties and efficacy of oral drugs through promiscuous metabolism. However, the atomistic details of the enzyme-drug interactions of gut bacterial enzymes which can potentially carry out the metabolism of drug molecules are still scarce. A well-known example is the FDA drug amphetamine (a central nervous system stimulant), which has been predicted to undergo promiscuous metabolism by gut bacteria. Therefore, to understand the atomistic details and energy landscape of the gut microbial enzyme-mediated metabolism of this drug, molecular dynamics studies were performed. It was observed that amphetamine binds to tyramine oxidase from the Escherichia coli strain present in the human gut microbiota at the binding site harboring polar and nonpolar amino acids. The stability analysis of amphetamine at the binding site showed that the binding is stable and the free energy for the binding of amphetamine was found to be ~ −51.71 kJ/mol. The insights provided by this study on promiscuous metabolism of amphetamine by a gut enzyme will be very useful to improve the efficacy of the drug.  相似文献   
960.
M24B peptidases cleaving Xaa-Pro bond in dipeptides are prolidases whereas those cleaving this bond in longer peptides are aminopeptidases-P. Bacteria have small aminopeptidases-P (36-39 kDa), which are diverged from canonical aminopeptidase-P of Escherichia coli (50 kDa). Structure-function studies of small aminopeptidases-P are lacking. We report crystal structures of small aminopeptidases-P from E. coli and Deinococcus radiodurans, and report substrate-specificities of these proteins and their ortholog from Mycobacterium tuberculosis. These are aminopeptidases-P, structurally close to small prolidases except for absence of dipeptide-selectivity loop. We noticed absence of this loop and conserved arginine in canonical archaeal prolidase (Maher et al., Biochemistry. 43, 2004, 2771-2783) and questioned its classification. Our enzymatic assays show that this enzyme is an aminopeptidase-P. Further, our mutagenesis studies illuminate importance of DXRY sequence motif in bacterial small aminopeptidases-P and suggest common evolutionary origin with human XPNPEP1/XPNPEP2. Our analyses reveal sequence/structural features distinguishing small aminopeptidases-P from other M24B peptidases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号