首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3590篇
  免费   220篇
  国内免费   4篇
  3814篇
  2023年   14篇
  2022年   16篇
  2021年   46篇
  2020年   29篇
  2019年   38篇
  2018年   42篇
  2017年   42篇
  2016年   76篇
  2015年   104篇
  2014年   147篇
  2013年   186篇
  2012年   216篇
  2011年   225篇
  2010年   248篇
  2009年   228篇
  2008年   230篇
  2007年   249篇
  2006年   215篇
  2005年   205篇
  2004年   214篇
  2003年   223篇
  2002年   203篇
  2001年   45篇
  2000年   39篇
  1999年   42篇
  1998年   48篇
  1997年   39篇
  1996年   36篇
  1995年   28篇
  1994年   26篇
  1993年   28篇
  1992年   25篇
  1991年   26篇
  1990年   13篇
  1989年   22篇
  1988年   25篇
  1987年   15篇
  1986年   13篇
  1985年   12篇
  1984年   22篇
  1983年   11篇
  1982年   11篇
  1981年   10篇
  1980年   14篇
  1979年   7篇
  1978年   10篇
  1977年   5篇
  1976年   12篇
  1975年   7篇
  1974年   7篇
排序方式: 共有3814条查询结果,搜索用时 15 毫秒
81.
82.
83.
We report the first large-scale gel-free proteomic analysis of the soluble subproteome of the emerging pathogen Ochrobactrum anthropi. Utilizing our robust offline multidimensional protein identification protocol, a total of 57 280 peptides were initially identified utilizing automated MS/MS analysis software. We describe our investigation of the heuristic protein validation tool PROVALT and demonstrate its ability to increase the speed and accuracy of the curation process of large-scale proteomic datasets. PROVALT reduced our peptide list to 8517 identified peptides and further manual curation of these peptides led to a final list of 984 uniquely identified peptides that resulted in the positive identification of 249 proteins. These identified proteins were functionally classified and physiochemically characterized. A variety of typical "housekeeping" functions identified within the proteome included nucleic acid, amino and fatty acid anabolism and catabolism, glycolysis, TCA cycle, and pyruvate and selenoamino acid metabolism. In addition, a number of potential virulence factors of relevance to both plant and human disease were identified.  相似文献   
84.
Dihydroorotate dehydrogenase B (DHODB) catalyzes the oxidation of dihydroorotate (DHO) to orotate and is found in the pyrimidine biosynthetic pathway. The Lactococcus lactis enzyme is a dimer of heterodimers containing FMN, FAD, and a 2Fe-2S center. Lys-D48 is found in the catalytic subunit and its side-chain adopts different positions, influenced by ligand binding. Based on crystal structures of DHODB in the presence and absence of orotate, we hypothesized that Lys-D48 has a role in facilitating electron transfer in DHODB, specifically in stabilizing negative charge in the reduced FMN isoalloxazine ring. We show that mutagenesis of Lys-D48 to an alanine, arginine, glutamine, or glutamate residue (mutants K38A, K48R, K48Q, and K48E) impairs catalytic turnover substantially (approximately 50-500-fold reduction in turnover number). Stopped-flow studies demonstrate that loss of catalytic activity is attributed to poor rates of FMN reduction by substrate. Mutation also impairs electron transfer from the 2Fe-2S center to FMN. Addition of methylamine leads to partial rescue of flavin reduction activity. Nicotinamide coenzyme oxidation and reduction at the distal FAD site is unaffected by the mutations. Formation of the spin-interacting state between the FMN semiquinone-reduced 2Fe-2S centers observed in wild-type enzyme is retained in the mutant proteins, consistent with there being little perturbation of the superexchange paths that contribute to the efficiency of electron transfer between these cofactors. Our data suggest a key charge-stabilizing role for Lys-D48 during reduction of FMN by dihydroorotate, or by electron transfer from the 2Fe-2S center, and establish a common mechanism of FMN reduction in the single FMN-containing A-type and the complex multicenter B-type DHOD enzymes.  相似文献   
85.
Plants frequently suffer attack from herbivores and microbial pathogens, and have evolved a complex array of defence mechanisms to resist defoliation and disease. These include both preformed defences, ranging from structural features to stores of toxic secondary metabolites, and inducible defences, which are activated only after an attack is detected. It is well known that plant defences against pests and pathogens are commonly affected by environmental conditions, but the mechanisms by which responses to the biotic and abiotic environments interact are only poorly understood. In this review, we consider the impact of light on plant defence, in terms of both plant life histories and rapid scale molecular responses to biotic attack. We bring together evidence that illustrates that light not only modulates defence responses via its influence on biochemistry and plant development but, in some cases, is essential for the development of resistance. We suggest that the interaction between the light environment and plant defence is multifaceted, and extends across different temporal and biological scales.  相似文献   
86.
Summary 1. Mutations in the S4 segment of domain III in the voltage gated skeletal muscle sodium channel hNaV1.4 were constructed to test the roles of each charged residue in deactivation gating. Mutations comprised charge reversals at K1-R6, charge neutralization, and substitution at R4 and R5. 2. Charge-reversing mutations at R4 and R5 produced the greatest alteration of activation parameters compared to hNaV1.4. Effects included depolarization of the conductance/voltage (g/V) curve, decreased valence and slowing of kinetics. 3. Reversal of charge at R2 to R4 hyperpolarized, and reversal at R5 or R6 depolarized the h curve. Most DIIIS4 mutations slowed inactivation from the open state. R4E slowed closed state fast inactivation and R5E inhibited its completion. 4. Deactivation from the open and/or inactivated state was prolonged in mutations reversing charge at R2 to R4 but accelerated by reversal of charge at R5 or R6. Effects were most pronounced at central charges R4 and R5. 5. Charge and structure each contribute to effects of mutations at R4 and R5 on channel gating. Effects of mutations on activation and deactivation at R4 and, to a lesser extent R5, were primarily owing to charge alteration, whereas effects on fast inactivation were charge independent.  相似文献   
87.
Aquatic macrophytes are one of the biological quality elements in the Water Framework Directive (WFD) for which status assessments must be defined. We tested two methods to classify macrophyte species and their response to eutrophication pressure: one based on percentiles of occurrence along a phosphorous gradient and another based on trophic ranking of species using Canonical Correspondence Analyses in the ranking procedure. The methods were tested at Europe-wide, regional and national scale as well as by alkalinity category, using 1,147 lakes from 12 European states. The grouping of species as sensitive, tolerant or indifferent to eutrophication was evaluated for some taxa, such as the sensitive Chara spp. and the large isoetids, by analysing the (non-linear) response curve along a phosphorous gradient. These thresholds revealed in these response curves can be used to set boundaries among different ecological status classes. In total 48 taxa out of 114 taxa were classified identically regardless of dataset or classification method. These taxa can be considered the most consistent and reliable indicators of sensitivity or tolerance to eutrophication at European scale. Although the general response of well known indicator species seems to hold, there are many species that were evaluated differently according to the database selection and classification methods. This hampers a Europe-wide comparison of classified species lists as used for the status assessment within the WFD implementation process.  相似文献   
88.
Brenner S  Hay S  Munro AW  Scrutton NS 《The FEBS journal》2008,275(18):4540-4557
This study on human cytochrome P450 reductase (CPR) presents a comprehensive analysis of the thermodynamic and kinetic effects of pH and solvent on two- and four-electron reduction in this diflavin enzyme. pH-dependent redox potentiometry revealed that the thermodynamic equilibrium between various two-electron reduced enzyme species (FMNH*,FADH*; FMN,FADH2; FMNH2,FAD) is independent of pH. No shift from the blue, neutral di-semiquinone (FMNH*,FADH*) towards the red, anionic species is observed upon increasing the pH from 6.5 to 8.5. Spectrophotometric analysis of events following the mixing of oxidized CPR and NADPH (1 to 1) in a stopped-flow instrument demonstrates that the establishment of this thermodynamic equilibrium becomes a very slow process at elevated pH, indicative of a pH-gating mechanism. The final level of blue di-semiquinone formation is found to be pH independent. Stopped-flow experiments using excess NADPH over CPR provide evidence that both pH and solvent significantly influence the kinetic exposure of the blue di-semiquinone intermediate, yet the observed rate constants are essentially pH independent. Thus, the kinetic pH-gating mechanism under stoichiometric conditions is of no significant kinetic relevance for four-electron reduction, but rather modulates the observed semiquinone absorbance at 600 nm in a pH-dependent manner. The use of proton inventory experiments and primary kinetic isotope effects are described as kinetic tools to disentangle the intricate pH-dependent kinetic mechanism in CPR. Our analysis of the pH and isotope dependence in human CPR reveals previously hidden complexity in the mechanism of electron transfer in this complex flavoprotein.  相似文献   
89.
The most powerful genome-scale framework to model metabolism, flux balance analysis (FBA), is an evolutionary optimality model. It hypothesizes selection upon a proposed optimality criterion in order to predict the set of internal fluxes that would maximize fitness. Here we present a direct test of the optimality assumption underlying FBA by comparing the central metabolic fluxes predicted by multiple criteria to changes measurable by a 13C-labeling method for experimentally-evolved strains. We considered datasets for three Escherichia coli evolution experiments that varied in their length, consistency of environment, and initial optimality. For ten populations that were evolved for 50,000 generations in glucose minimal medium, we observed modest changes in relative fluxes that led to small, but significant decreases in optimality and increased the distance to the predicted optimal flux distribution. In contrast, seven populations evolved on the poor substrate lactate for 900 generations collectively became more optimal and had flux distributions that moved toward predictions. For three pairs of central metabolic knockouts evolved on glucose for 600–800 generations, there was a balance between cases where optimality and flux patterns moved toward or away from FBA predictions. Despite this variation in predictability of changes in central metabolism, two generalities emerged. First, improved growth largely derived from evolved increases in the rate of substrate use. Second, FBA predictions bore out well for the two experiments initiated with ancestors with relatively sub-optimal yield, whereas those begun already quite optimal tended to move somewhat away from predictions. These findings suggest that the tradeoff between rate and yield is surprisingly modest. The observed positive correlation between rate and yield when adaptation initiated further from the optimum resulted in the ability of FBA to use stoichiometric constraints to predict the evolution of metabolism despite selection for rate.  相似文献   
90.

Background

The Mycobacterium bovis Bacille Calmette-Guérin (BCG) vaccine is given to >120 million infants each year worldwide. Most studies investigating the immune response to BCG have focused on adaptive immunity. However the importance of TCR-gamma/delta (γδ) T cells and NK cells in the mycobacterial-specific immune response is of increasing interest.

Methods

Participants in four age-groups were BCG-immunized. Ten weeks later, in vitro BCG-stimulated blood was analyzed for NK and T cell markers, and intracellular IFNgamma (IFNγ) by flow cytometry. Total functional IFNγ response was calculated using integrated median fluorescence intensity (iMFI).

Results

In infants and children, CD4 and CD4-CD8- (double-negative (DN)) T cells were the main IFNγ-expressing cells representing 43-56% and 27-37% of total CD3+ IFNγ+ T cells respectively. The iMFI was higher in DN T cells compared to CD4 T cells in all age groups, with the greatest differences seen in infants immunized at birth (p=0.002) or 2 months of age (p<0.0001). When NK cells were included in the analysis, they accounted for the majority of total IFNγ-expressing cells and, together with DN Vδ2 γδ T cells, had the highest iMFI in infants immunized at birth or 2 months of age.

Conclusion

In addition to CD4 T cells, NK cells and DN T cells, including Vδ2 γδ T cells, are the key populations producing IFNγ in response to BCG immunization in infants and children. This suggests that innate immunity and unconventional T cells play a greater role in the mycobacterial immune response than previously recognized and should be considered in the design and assessment of novel tuberculosis vaccines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号