首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706篇
  免费   25篇
  2023年   6篇
  2022年   4篇
  2021年   25篇
  2020年   16篇
  2019年   16篇
  2018年   18篇
  2017年   14篇
  2016年   20篇
  2015年   27篇
  2014年   34篇
  2013年   45篇
  2012年   45篇
  2011年   71篇
  2010年   38篇
  2009年   31篇
  2008年   53篇
  2007年   45篇
  2006年   47篇
  2005年   36篇
  2004年   40篇
  2003年   29篇
  2002年   23篇
  2001年   18篇
  2000年   8篇
  1999年   7篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1990年   1篇
  1988年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有731条查询结果,搜索用时 15 毫秒
121.
Abstract

Fungi of the Trichoderma species are valued industrial enzymes in support of the ‘zero-waste’ technology to convert agro-industrial biomass into valuable products, i.e. nanocellulose (NC). In this study, an in silico approach using substrate docking and molecular dynamic (MD) simulation was used to predict the order of which the multilayers of cellulosic polymers, i.e. lignin, hemicellulose and cellulose in oil palm leaves (OPL) are degraded by fungal enzymes, endocellulase and exocellulase. The study aimed to establish the catalytic tendencies of the enzymes to optimally degrade the cellulosic components of OPL for high yield production of NC. Energy minimized endocellulase and exocellulase models revealed satisfactory scores of PROCHECK (90.0% and 91.2%), Verify3D (97.23% and 98.85%) and ERRAT (95.24% and 91.00%) assessments. Active site prediction by blind docking, COACH meta-server and multiple sequence alignment indicated the catalytic triads for endocellulase and exocellulase were Ser116–His205–Glu249 and Ser382–Arg124–Asp385, respectively. Binding energy of endocellulase docked with hemicellulose (?6.0 ? kcal mol?1) was the most favourable followed by lignin (?5.6 ? kcal mol?1) and cellulose (?4.4 ? kcal mol?1). Exocellulase, contrarily, bonded favorably with lignin (?8.7 ? kcal mol?1), closely followed by cellulose (?8.5 ? kcal mol?1) and hemicellulose (?8.4 ? kcal mol?1). MDs simulations showed that interactions of complexes, endocellulase–hemicellulose and the exocellulase–cellulose being the most stable. Thus, the findings of the study successfully identified the specific actions of sugar-acting enzymes for NC production.

Communicated by Ramaswamy H. Sarma  相似文献   
122.
123.
124.

Introduction

Epithelial ovarian cancer (EOC) remains the leading cause of death from gynecologic malignancies and has an alarming global fatality rate. Besides the differences in underlying pathogenesis, distinguishing between high grade (HG) and low grade (LG) EOC is imperative for the prediction of disease progression and responsiveness to chemotherapy.

Objectives

The aim of this study was to investigate, the tissue metabolome associated with HG and LG serous epithelial ovarian cancer.

Methods

A combination of one dimensional proton nuclear magnetic resonance (1D H NMR) spectroscopy and targeted mass spectrometry (MS) was employed to profile the tissue metabolome of HG, LG serous EOCs, and controls.

Results

Using partial least squares-discriminant analysis, we observed significant separation between all groups (p?<?0.05) following cross validation. We identified which metabolites were significantly perturbed in each EOC grade as compared with controls and report the biochemical pathways which were perturbed due to the disease. Among these metabolic pathways, ascorbate and aldarate metabolism was identified, for the first time, as being significantly altered in both LG and HG serous cancers. Further, we have identified potential biomarkers of EOC and generated predictive algorithms with AUC (CI)?=?0.940 and 0.929 for HG and LG, respectively.

Conclusion

These previously unreported biochemical changes provide a framework for future metabolomic studies for the development of EOC biomarkers. Finally, pharmacologic targeting of the key metabolic pathways identified herein could lead to novel and effective treatments of EOC.
  相似文献   
125.
Prolactin and leptin are newly recognized platelet co-stimulators due to enhancement of ADP-induced platelet aggregation. The aim of our study was to assess whether both hormones prolactin and leptin play a role as co-activators of platelet activation in patients with acute coronary syndromes. Twenty-one patients with acute coronary syndromes, 10 with stable angina pectoris and 10 controls were studied. Patients with acute coronary syndromes showed significantly higher prolactin and leptin values and a significant increased P-selectin expression on platelets compared to patients with stable angina pectoris or controls. However, patients with acute myocardial infarction as a subgroup of acute coronary syndromes showed the highest prolactin levels as well as ADP stimulated P-selectin expression. In the myocardial infarction subgroup prolactin values showed a significant correlation to ADP stimulated P-selectin expression on platelets (r (2)=0.41; p=0.025), whereas leptin was not correlated. Our data indicate an association between increased prolactin values and enhanced P-selectin expression on platelets in patients with acute coronary syndromes. Therefore, the stress hormone prolactin could be a co-stimulator of platelet activation in these patients. In contrast, the putative platelet activator leptin does not seem to play a major role in acute coronary syndromes.  相似文献   
126.
Retroviral proteases (PRs) have a unique specificity that allows cleavage of sites with or without a P1′ proline. A P1′ proline is required at the MA/CA cleavage site due to its role in a post-cleavage conformational change in the capsid protein. However, the HIV-1 PR prefers to have large hydrophobic amino acids flanking the scissile bond, suggesting that PR recognizes two different classes of substrate sequences. We analyzed the cleavage rate of over 150 combinations of six different HIV-1 cleavage sites to explore rate determinants of cleavage. We found that cleavage rates are strongly influenced by the two amino acids flanking the amino acids at the scissile bond (P2–P1/P1′–P2′), with two complementary sets of rules. When P1′ is proline, the P2 side chain interacts with a polar region in the S2 subsite of the PR, while the P2′ amino acid interacts with a hydrophobic region of the S2′ subsite. When P1′ is not proline, the orientations of the P2 and P2′ side chains with respect to the scissile bond are reversed; P2 residues interact with a hydrophobic face of the S2 subsite, while the P2′ amino acid usually engages hydrophilic amino acids in the S2′ subsite. These results reveal that the HIV-1 PR has evolved bi-functional S2 and S2′ subsites to accommodate the steric effects imposed by a P1′ proline on the orientation of P2 and P2′ substrate side chains. These results also suggest a new strategy for inhibitor design to engage the multiple specificities in these subsites.  相似文献   
127.
Background and aim It has been reported that intestinal ischemia–reperfusion (I/R) injury results from oxidative stress caused by increased reactive oxygen species. Dexpanthenol (Dxp) is an alcohol analogue with epitelization, anti-inflammatory, antioxidant, and increasing peristalsis activities. In the present study, the aim was to investigate protective and therapeutic effects of Dxp against intestinal I/R injury. Materials and methods Overall, 40 rats were assigned into five groups including one control, one alone Dxp, and three I/R groups (40-min ischemia; followed by 2-h reperfusion). In two I/R groups, Dxp (500?mg/kg, i.m.) was given before or during ischemia. The histopathological findings including apoptotic changes, and also tissue and serum biochemical parameters levels, were determined. Oxidative stress and ileum damage were assessed by biochemical and histological examination. In the control (n?=?8) and alone Dxp (n?=?8; 500?mg/kg, i.m. of Dxp was given at least 30?min before recording), groups were incised via laparotomy, and electrical activity was recorded from their intestines. In this experiment, the effect of Dxp on the motility of the intestine was examined by analyzing electrical activity. Results In ileum, oxidant levels were found to be higher, while antioxidant levels were found to be lower in I/R groups when compared with controls. Dxp approximated high levels of oxidants than those in the control group, while it increased antioxidant values compared with I/R groups. Histopathological changes caused by intestinal I/R injury and histological improvements were observed in both groups given Dxp. In the Dxp group, electrical signal activity markedly increased compared with the control group. Conclusions Here, it was seen that Dxp had protective and therapeutic effects on intestinal I/R injury and gastrointestinal system peristaltism.  相似文献   
128.
129.
Various molecular and cellular processes are involved in renal fibrosis, such as oxidative stress, inflammation, endothelial cell injury, and apoptosis. Heat shock proteins (HSPs) are implicated in the progression of chronic kidney disease (CKD). Our aim was to evaluate changes in urine and serum HSP levels over time and their relationships with the clinical parameters of CKD in children. In total, 117 children with CKD and 56 healthy children were examined. The CKD group was followed up prospectively for 24 months. Serum and urine HSP27, HSP40, HSP47, HSP60, HSP70, HSP72, and HSP90 levels and serum anti-HSP60 and anti-HSP70 levels were measured by ELISA at baseline, 12 months, and 24 months. The urine levels of all HSPs and the serum levels of HSP40, HSP47, HSP60, HSP70, anti-HSP60, and anti-HSP70 were higher at baseline in the CKD group than in the control group. Over the months, serum HSP47 and HSP60 levels steadily decreased, whereas HSP90 and anti-HSP60 levels steadily increased. Urine HSP levels were elevated in children with CKD; however, with the exception of HSP90, they decreased over time. In conclusion, our study demonstrates that CKD progression is a complicated process that involves HSPs, but they do not predict CKD progression. The protective role of HSPs against CKD may weaken over time, and HSP90 may have a detrimental effect on the disease course.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01239-9.  相似文献   
130.
The aim of our studies was to test the effect and role of vitamin E and selenium supplements on yeast cell. In this study, the effects of selenium (Se), vitamin E (Vit. E), and their combination (Se plus Vit. E) on the composition of fatty acids and proteins were examined in Saccharomyces cerevisiae strains WET136 and 522. S. cerevisiae cells were grown up in YEPD medium supplemented with Se, Vit. E or their combination. It was found that the level of stearic acid was increased in all supplemented groups (p<0·05; p<0·001). The content of saturated and unsaturated fatty acids was decreased (p<0·05; p<0·01; p<0·001) in Vit. E and Vit. E plus Se supplemented S. cerevisiae. On the other hand, Se alone caused an increase (p<0·001) in the saturated fatty acids but a decrease (p<0·05; p<0·001) in the unsaturated fatty acids. Total proteins in S. cerevisiae were significantly increased (p<0·001) by Vit. E supplement. There was no significant change observed in S. cerevisiae supplemented with Se. These findings indicate that membrane composition of S. cerevisiae is affected by both Vit. E and Se supplements. © 1997 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号