首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   22篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   13篇
  2014年   9篇
  2013年   11篇
  2012年   19篇
  2011年   22篇
  2010年   6篇
  2009年   11篇
  2008年   13篇
  2007年   14篇
  2006年   14篇
  2005年   13篇
  2004年   8篇
  2003年   4篇
  2002年   7篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   6篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1981年   2篇
  1977年   3篇
  1975年   2篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
211.
212.
Heart failure is a condition closely linked to diabetes. Hyperglycaemia amplifies the generation of a major advanced glycation end product Nepsilon-(carboxymethyl)lysine (CML), which has been associated with the development of vascular and inflammatory complications. An increased accumulation of CML in hearts of diabetic patients may be one of the mechanisms related to the high risk of heart failure. Therefore, we investigated the localization of CML in diabetic hearts. To investigate the presence and accumulation of CML in tissues, a monoclonal anti-CML antibody was generated and characterised. With this novel monoclonal antibody against CML, the localization of CML was investigated by immunohistochemistry, in heart tissue of controls (n = 9) and heart tissue of diabetic patients (n = 8) without signs of inflammation or infarction. In addition, in the same subjects we studied the presence of CML in renal and lung tissues. CML staining was approximately sixfold higher in hearts from diabetic patients as compared to control hearts (2.0 +/- 0.3 and 0.3 +/- 0.2 A.U., respectively, P < 0.01). CML deposition was localized in the small intramyocardial arteries in endothelial cells and smooth muscle cells, but not in cardiomyocytes. These arteries did not show morphological abnormalities. The intensity of staining between arteries at the epicardial, midcardial and endocardial side did not vary significantly within patients. In renal tissues, CML staining was most prominent in tubules and in atherosclerotic vessels, without differences in intensity between controls and diabetic patients. In non-infected lungs, no CML was detected. In conclusion, CML adducts are abundantly present in small intramyocardial arteries in the heart tissue of diabetic patients. The accumulation of CML in diabetic hearts may contribute to the increased risk of heart failure in hyperglycaemia.  相似文献   
213.
A total of 27Fusarium culmorum isolates from Germany and 41F. graminearum isolates from Kenya were investigated for aggressiveness and mycotoxin production on wheat ears. In addition, ergosterol content of the kernels from ears inoculated withF. graminearum was determined and theF. culmorum isolates were tested for mycotoxin productionin vitro. For both pathogens, isolates markedly differed in aggressiveness. 59% and 37% of theF. culmorum isolates produced NIV and DON, respectively,in vivo andin vitro. The DON-producing isolates also produced 3-acDONin vitro. The more aggressive isolates produced mainly DON while the less aggressive isolates produced mainly NIV. 12% and 85% of theF. graminearum isolates produced NIV and DON, respectively. The highly aggressive isolates produced higher amounts of DON, aggressiveness being highly correlated to DON content in the kernels. NIV-producing isolates were less aggressive. Ergosterol content of kernels was moderately correlated to aggressiveness but highly correlated to DON content. Disease severity was associated with kernel weight reduction.  相似文献   
214.
Staphylococcus aureus is an important human pathogen whose virulence relies on the secretion of many different proteins. In general, the secretion of most proteins in S. aureus, as well as other bacteria, is dependent on the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein to the general secretory pathway. The arylomycins are a class of natural product antibiotics that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. While wild-type S. aureus (NCTC 8325) is naturally resistant to the arylomycins, sensitivity is conferred via a point mutation in its SPase. Here, we use a synthetic arylomycin along with a sensitized strain of S. aureus and multidimensional protein identification technology (MudPIT) mass spectrometry to identify 46 proteins whose extracellular accumulation requires SPase activity. Forty-four possess identifiable Sec-type signal peptides and thus are likely canonically secreted proteins, while four also appear to possess cell wall retention signals. We also identified the soluble C-terminal domains of two transmembrane proteins, lipoteichoic acid synthase, LtaS, and O-acyteltransferase, OatA, both of which appear to have noncanonical, internal SPase cleavage sites. Lastly, we identified three proteins, HtrA, PrsA, and SAOUHSC_01761, whose secretion is induced by arylomycin treatment. In addition to elucidating fundamental aspects of the physiology and pathology of S. aureus, the data suggest that an arylomycin-based therapeutic would reduce virulence while simultaneously eradicating an infection.  相似文献   
215.
216.
Adipose-derived stromal cells (ASC) are promising candidates for cell therapy, for example to treat myocardial infarction. Commonly, fetal bovine serum (FBS) is used in ASC culturing. However, FBS has several disadvantages. Its effects differ between batches and, when applied clinically, transmission of pathogens and antibody development against FBS are possible. In this study, we investigated whether FBS can be substituted by human platelet lysate (PL) in ASC culture, without affecting functional capacities particularly important for cardiac repair application of ASC. We found that PL-cultured ASC had a significant 3-fold increased proliferation rate and a significantly higher attachment to tissue culture plastic as well as to endothelial cells compared with FBS-cultured ASC. PL-cultured ASC remained a significant 25% smaller than FBS-cultured ASC. Both showed a comparable surface marker profile, with the exception of significantly higher levels of CD73, CD90, and CD166 on PL-cultured ASC. PL-cultured ASC showed a significantly higher migration rate compared with FBS-cultured ASC in a transwell assay. Finally, FBS- and PL-cultured ASC had a similar high capacity to differentiate towards cardiomyocytes. In conclusion, this study showed that culturing ASC is more favorable in PL-supplemented medium compared with FBS-supplemented medium.  相似文献   
217.
Background

According to the current guidelines of the European Society of Cardiology, patients with left-sided infective endocarditis are treated with intravenous antibiotics for 4–6 weeks, leading to extensive hospital stay and high costs. Recently, the Partial Oral Treatment of Endocarditis (POET) trial suggested that partial oral treatment is effective and safe in selected patients. Here, we investigated if such patients are seen in our daily clinical practice.

Methods

We enrolled 119 adult patients diagnosed with left-sided infective endocarditis in a retrospective, observational study. We identified those that would be eligible for switching to partial oral antibiotic treatment as defined in the POET trial (e.g. stable clinical condition without signs of infection). Secondary objectives were to provide insight into the time until each patient was eligible for partial oral treatment, and to determine parameters of longer hospital stay and/or need for extended intravenous antibiotic treatment.

Results

Applying the POET selection criteria, the condition of 38 patients (32%) was stable enough to switch them to partial oral treatment, of which 18 (47.3%), 8 (21.1%), 9 (23.7%) and 3 patients (7.9%) were eligible for switching after 10, 14, 21 days or 28 days of intravenous treatment, respectively.

Conclusion

One-third of patients who presented with left-sided endocarditis in routine clinical practice were possible candidates for switching to partial oral treatment. This could have major implications for both the patient’s quality of life and healthcare costs. These results offer an interesting perspective for implementation of such a strategy, which should be accompanied by a prospective cost-effectiveness analysis.

  相似文献   
218.
219.
A quantitative method for the determination of proteins in complex biological matrices has been developed based on the selectivity of antibodies for sample purification followed by proteolytic digestion and quantitative mass spectrometry. An immunosorbent of polyclonal anti-bovine serum albumin (BSA) antibodies immobilized on CNBR agarose is used in the on-line mode for selective sample pretreatment. Next, the purified sample is trypsin digested to obtain protein specific peptide markers. Subsequent analysis of the peptide mixture using a desalination procedure and a separation step coupled, on-line to an ion-trap mass spectrometer, reveals that this method enables selective determination of proteins in biological matrices like diluted human plasma. This approach enhances substantially the selectivity compared to common quantitative analysis executed with immunoassays and colorimetry, fluorimetry or luminescence detection. Hyphenation of the immunoaffinity chromatography with on-line digestion and chromatography-mass spectrometry is performed and a completely on-line quantification of the model protein BSA in bovine and human urine was established. A detection limit of 170 nmol/l and a quantification limit of 280 nmol/l is obtained using 50 microl of either standard or spiked biological matrix. The model system allows fully automated absolute quantitative mass spectrometric analysis of intact proteins in biological matrices without time-consuming labeling procedures.  相似文献   
220.
Cell survival, tissue integrity and organismal health depend on the ability to maintain functional protein networks even under conditions that threaten protein integrity. Protection against such stress conditions involves the adaptation of folding and degradation machineries, which help to preserve the protein network by facilitating the refolding or disposal of damaged proteins. In multicellular organisms, cells are permanently exposed to stress resulting from mechanical forces. Yet, for long time mechanical stress was not recognized as a primary stressor that perturbs protein structure and threatens proteome integrity. The identification and characterization of protein folding and degradation systems, which handle force‐unfolded proteins, marks a turning point in this regard. It has become apparent that mechanical stress protection operates during cell differentiation, adhesion and migration and is essential for maintaining tissues such as skeletal muscle, heart and kidney as well as the immune system. Here, we provide an overview of recent advances in our understanding of mechanical stress protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号