首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   22篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   13篇
  2014年   9篇
  2013年   11篇
  2012年   19篇
  2011年   22篇
  2010年   6篇
  2009年   11篇
  2008年   13篇
  2007年   14篇
  2006年   14篇
  2005年   13篇
  2004年   8篇
  2003年   4篇
  2002年   7篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   6篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1981年   2篇
  1977年   3篇
  1975年   2篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
151.
BACKGROUND: Duplicated chromosomes are equally segregated to daughter cells by a bipolar mitotic spindle during cell division. By metaphase, sister chromatids are coupled to microtubule (MT) plus ends from opposite poles of the bipolar spindle via kinetochores. Here we describe a phosphorylation event that promotes the coupling of kinetochores to microtubule plus ends. RESULTS: Dam1 is a kinetochore component that directly binds to microtubules. We identified DAM1-765, a dominant allele of DAM1, in a genetic screen for mutations that increase stress on the spindle pole body (SPB) in Saccharomyces cerevisiae. DAM1-765 contains the single mutation S221F. We show that S221 is one of six Dam1 serines (S13, S49, S217, S218, S221, and S232) phosphorylated by Mps1 in vitro. In cells with single mutations S221F, S218A, or S221A, kinetochores in the metaphase spindle form tight clusters that are closer to the SPBs than in a wild-type cell. Five lines of experimental evidence, including localization of spindle components by fluorescence microscopy, measurement of microtubule dynamics by fluorescence redistribution after photobleaching, and reconstructions of three-dimensional structure by electron tomography, combined with computational modeling of microtubule behavior strongly indicate that, unlike wild-type kinetochores, Dam1-765 kinetochores do not colocalize with an equal number of plus ends. Despite the uncoupling of the kinetochores from the plus ends of MTs, the DAM1-765 cells are viable, complete the cell cycle with the same kinetics as wild-type cells, and biorient their chromosomes as efficiently as wild-type cells. CONCLUSIONS: We conclude that phosphorylation of Dam1 residues S218 and S221 by Mps1 is required for efficient coupling of kinetochores to MT plus ends. We find that efficient plus-end coupling is not required for (1) maintenance of chromosome biorientation, (2) maintenance of tension between sister kinetochores, or (3) chromosome segregation.  相似文献   
152.
153.
Herein we report the characterization and optimization of single-step inline enrichment of phosphopeptides directly from small amounts of whole cell and tissue lysates (100-500 μg) using a hydroxyapatite (HAP) microcolumn and Multidimensional Protein Identification Technology (MudPIT). In comparison to a triplicate HILIC-IMAC phosphopeptide enrichment study, ~80% of the phosphopeptides identified using HAP-MudPIT were unique. Similarly, analysis of the consensus phosphorylation motifs between the two enrichment methods illustrates the complementarity of calcium- and iron-based enrichment methods and the higher sensitivity and selectivity of HAP-MudPIT for acidic motifs. We demonstrate how the identification of more multiply phosphorylated peptides from HAP-MudPIT can be used to quantify phosphorylation cooperativity. Through optimization of HAP-MudPIT on a whole cell lysate we routinely achieved identification and quantification of ca. 1000 phosphopeptides from a ~1 h enrichment and 12 h MudPIT analysis on small quantities of material. Finally, we applied this optimized method to identify phosphorylation sites from a mass-limited mouse brain region, the amygdala (200-500 μg), identifying up to 4000 phosphopeptides per run.  相似文献   
154.
The forelimb digital flexors of the horse display remarkable diversity in muscle architecture despite each muscle-tendon unit having a similar mechanical advantage across the fetlock joint. We focus on two distinct muscles of the digital flexor system: short compartment deep digital flexor (DDF(sc)) and the superficial digital flexor (SDF). The objectives were to investigate force-length behavior and work performance of these two muscles in vivo during locomotion, and to determine how muscle architecture contributes to in vivo function in this system. We directly recorded muscle force (via tendon strain gauges) and muscle fascicle length (via sonomicrometry crystals) as horses walked (1.7 m s(-1)), trotted (4.1 m s(-1)) and cantered (7.0 m s(-1)) on a motorized treadmill. Over the range of gaits and speeds, DDF(sc) fascicles shortened while producing relatively low force, generating modest positive net work. In contrast, SDF fascicles initially shortened, then lengthened while producing high force, resulting in substantial negative net work. These findings suggest the long fibered, unipennate DDF(sc) supplements mechanical work during running, whereas the short fibered, multipennate SDF is specialized for economical high force and enhanced elastic energy storage. Apparent in vivo functions match well with the distinct architectural features of each muscle.  相似文献   
155.

Background

The two sympatric species of Tunisian desert ants, Cataglyphis bicolor and C. mauritanica, do not exhibit any differences in their foraging ecology, e.g. in food preferences and in their spatial and temporal activity patterns. Here we show that instead the two species markedly differ in their life histories.

Results

We analysed mtDNA of specimens that were collected along a 250-km transect. C. bicolor exhibited a genetically unstructured population (with the genetic and geographic distances among colonies not being correlated). On the contrary the populations of the polygynous C. mauritanica were clearly structured, i.e. exhibited a strong correlation between genetic and geographic distances. This difference is in accordance with large queen dispersal distances due to far-reaching mating flights in C. bicolor and small queen dispersal distances due to colony foundation by budding in C. mauritanica. Furthermore, wherever we found populations of both species to coexist within the same habitat, the habitat was used agriculturally. Mapping nest positions over periods of several years showed that plowing dramatically decreased the nest densities of either species.

Conclusion

We conclude that owing to its greater queen dispersal potential C. bicolor might be more successful in quickly re-colonizing disturbed areas, while the slowly dispersing C. mauritanica could later out-compete C. bicolor by adopting its effective nest-budding strategy. According to this scenario the observed sympatry of the two species might be an intermediate stage in which faster colonization by one species and more powerful exploitation of space by the other species have somehow balanced each other out. In conclusion, C. bicolor and C. mauritanica represent an example where environmental disturbances in combination with different life histories might beget sympatry in congeneric species with overlapping niches.  相似文献   
156.
LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, that are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 coimmunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not coimmunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome.  相似文献   
157.
158.

Background

Human solid tumors that are hard or firm on physical palpation are likely to be cancerous, a clinical maxim that has been successfully applied to cancer screening programs, such as breast self-examination. However, the biological relevance or prognostic significance of tumor hardness remains poorly understood. Here we present a fracture mechanics based in vivo approach for characterizing the fracture toughness of biological tissue of human thyroid gland tumors.

Methods

In a prospective study, 609 solid thyroid gland tumors were percutaneously probed using standard 25 gauge fine needles, their tissue toughness ranked on the basis of the nature and strength of the haptic force feedback cues, and subjected to standard fine needle biopsy. The tumors' toughness rankings and final cytological diagnoses were combined and analyzed. The interpreting cytopathologist was blinded to the tumors' toughness rankings.

Results

Our data showed that cancerous and noncancerous tumors displayed remarkable haptically distinguishable differences in their material toughness.

Conclusion

The qualitative method described here, though subject to some operator bias, identifies a previously unreported in vivo approach to classify fracture toughness of a solid tumor that can be correlated with malignancy, and paves the way for the development of a mechanical device that can accurately quantify the tissue toughness of a human tumor.  相似文献   
159.
160.
Cadherin engagement regulates Rho family GTPases.   总被引:1,自引:0,他引:1  
The formation of cell-cell adherens junctions is a cadherin-mediated process associated with reorganization of the actin cytoskeleton. Because Rho family GTPases regulate actin dynamics, we investigated whether cadherin-mediated adhesion regulates the activity of RhoA, Rac1, and Cdc42. Confluent epithelial cells were found to have elevated Rac1 and Cdc42 activity but decreased RhoA activity when compared with low density cultures. Using a calcium switch method to manipulate junction assembly, we found that induction of cell-cell junctions increased Rac1 activity, and this was inhibited by E-cadherin function-blocking antibodies. Using the same calcium switch procedure, we found little effect on RhoA activity during the first hour of junction assembly. However, over several hours, RhoA activity significantly decreased. To determine whether these effects are mediated directly through cadherins or indirectly through engagement of other surface proteins downstream from junction assembly, we used a model system in which cadherin engagement is induced without cell-cell contact. For these experiments, Chinese hamster ovary cells expressing C-cadherin were plated on the extracellular domain of C-cadherin immobilized on tissue culture plates. Whereas direct cadherin engagement did not stimulate Cdc42 activity, it strongly inhibited RhoA activity but increased Rac1 activity. Deletion of the C-cadherin cytoplasmic domain abolished these effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号