首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   5篇
  2024年   1篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1962年   1篇
  1958年   1篇
  1947年   1篇
排序方式: 共有103条查询结果,搜索用时 54 毫秒
91.
Given the impact of mycelial morphology on fermentation performance, it is important to understand the factors that influence it, including agitation-induced fragmentation. The successful application of the energy dissipation/circulation function (EDC) to correlate fragmentation of Penicillium chrysogenum with agitation intensity and with different impeller types [5] has already been demonstrated. The EDC function takes into account the specific energy dissipation rate in the impeller swept volume and the frequency of mycelial circulation through that volume. In order to explore whether the EDC function can be used more generally to correlate fragmentation of different filamentous species, the present study extended the concept to agitation-induced, off-line fragmentation of Aspergillus oryzae grown in chemostat culture. The work shows that at EDC values off-line greater than that in the chemostat, fragmentation with different impellers can be correlated with the EDC. For EDC values less than those used in the chemostat, fragmentation did not occur. The earlier results of Jüsten et al. [5] with Penicillium chrysogenum are also reconsidered and found to behave similarly.  相似文献   
92.
Pitrilysin is a bacterial protease that is similar to the mammalian insulin-degrading enzyme, which is hypothesized to protect against the onset of Alzheimer's disease, and the yeast enzymes Axl1p and Ste23p, which are responsible for production of the a-factor mating pheromone in Saccharomyces cerevisiae. The lack of a phenotype associated with pitrilysin deficiency has hindered studies of this enzyme. Herein, we report that pitrilysin can be heterologously expressed in yeast such that it functionally substitutes for the shared roles of Axl1p and Ste23p in pheromone production, resulting in a readily observable phenotype. We have exploited this phenotype to conduct structure-function analyses of pitrilysin and report that residues within four sequence motifs that are highly conserved among M16A enzymes are essential for its activity. These motifs include the extended metalloprotease motif, a second motif that has been hypothesized to be important for the function of M16A enzymes, and two others not previously recognized as being important for pitrilysin function. We have also established that the two self-folding domains of pitrilysin are both required for its proteolytic activity. However, pitrilysin does not possess all the enzymatic properties of the yeast enzymes since it cannot substitute for the role of Axl1p in the repression of haploid invasive growth. These observations further support the utility of the yeast system for structure-function and comparative studies of M16A enzymes.  相似文献   
93.
Liao, T.Y. & Kullander, S.O. (2012). Phylogenetic significance of the kinethmoid‐associated Y‐shaped ligament and long intercostal ligaments in the Cypriniformes (Actinopterygii: Ostariophysi). —Zoologica Scripta, 42, 71–87. The phylogenetic significance of the Y‐shaped and long intercostal ligaments in the Cypriniformes is examined using character optimization in 184 species representing 20 non‐ostariophysan teleost species, five ostariophysan orders, seven cypriniform families and 14 cyprinid subfamilies. Character states were optimized on the phylogenetic trees of previous studies. Given the topology of Saitoh et al. (2011) , the Y‐shaped ligament, connecting the kinethmoid to the ethmoid complex, is shown to be a synapomorphy for the Cyprinidae, with reversals observed in the Cyprininae, Danioninae, Gobioninae and Psilorhynchinae. The condition of the Y‐shaped ligament is consistent within most subfamilies with a few exceptions. Despite the exceptions, the Y‐shaped ligament may be considered as a diagnostic character distinguishing cyprinid subfamilies with otherwise similar morphology, that is, the Danioninae and Opsariichthyinae. The long intercostal ligament, connecting five to eight ribs and ascending from the subdistal end of the fifth rib, is present in the Catostomidae and all cyprinid subfamilies, except for the Psilorhynchinae and two developmentally truncated genera, Danionella and Paedocypris. In addition to these two cypriniforme families, the long intercostal ligament is homoplastically present in some catfishes. Given the topology of Saitoh et al. (2011) , presence of the long intercostal ligament is a synapomorphy of Cyprinidae+Catostomidae. Some shorter ligaments are also present in the Cypriniformes and Chilodus gracilis (Characiformes), near the base of the anterior ribs and only occurring anterodorsally to the putative line of the long intercostal ligament even when it is absent.  相似文献   
94.
Human mesenchymal stem cell (hMSC) therapies have the potential to revolutionise the healthcare industry and replicate the success of the therapeutic protein industry; however, for this to be achieved there is a need to apply key bioprocessing engineering principles and adopt a quantitative approach for large-scale reproducible hMSC bioprocess development. Here we provide a quantitative analysis of the changes in concentration of glucose, lactate and ammonium with time during hMSC monolayer culture over 4 passages, under 100% and 20% dissolved oxgen (dO2), where either a 100%, 50% or 0% growth medium exchange was performed after 72h in culture. Yield coefficients, specific growth rates (h-1) and doubling times (h) were calculated for all cases. The 100% dO2 flasks outperformed the 20% dO2 flasks with respect to cumulative cell number, with the latter consuming more glucose and producing more lactate and ammonium. Furthermore, the 100% and 50% medium exchange conditions resulted in similar cumulative cell numbers, whilst the 0% conditions were significantly lower. Cell immunophenotype and multipotency were not affected by the experimental culture conditions. This study demonstrates the importance of determining optimal culture conditions for hMSC expansion and highlights a potential cost savings from only making a 50% medium exchange, which may prove significant for large-scale bioprocessing.  相似文献   
95.
TB/C3 mouse hybridoma cells have been grown at 2 controlled dO2 conditions by headspace and sparged oxygenation. Also a variety of sparging rates and sparger sizes and positions have been employed. Headspace oxygenation at dO2 levels from 5% to 100% of saturation give essentially the same performance as controls. Sparging is generally damaging to cells, the extent of damage decreasing with reduced sparging rate until at below about 0.02 vvm results equivalent to the unsparged conditions are obtained. Damage is clearly linked with bubble-cell interactions at the air-medium interface where bubbles bursting in clusters and of a size less than 5 mm appear to be the most lethal. When the interaction of air sparging with the agitator flow leads to an increase in the number of smaller bubbles and cluster bursts, cell damage is further increased. Pluronic F-68 reduces damage very significantly. Biological aspects are briefly discussed in the light of various biological tests. The practical implications of this work for large scale, free suspension cell culture are outlined.  相似文献   
96.
Phase separation and drop size distributions in dilute Na-caseinate/Na-alginate mixtures has been investigated using simultaneously two different measuring techniques: light scattering and image analysis. It has been found that even at very low concentrations of either polymer, where according to literature data the mixture should be homogenous, two phases can be observed. This phase separation was detected by both techniques and in each case, the drop size distributions measured by each of them were in good agreement.  相似文献   
97.
A number of β-carboline analogs have been obtained or synthesized, and their in vitro receptor affinities and in vivo antagonist activities determined. The choice of analogs was made in order to explore the importance of the N9-H, the aromatic nitrogen and the C3-ester moiety for high-receptor affinity and antagonist activity of this class of benzodiazepine antagonist. Among the analogs investigated, we describe the properties of 3-cyano-β-carboline (lh), the first potent β-carboline antagonist without a carbonyl at the C3-position.The results obtained indicate: (1) Specific interactions of the C3-substituent with key cationic receptor sites rather than electron-withdrawing properties are important for high-receptor affinity and antagonist activity. (2) Specific in-plane interactions of the atomatic nitrogen with a cationic receptor site, rather than stacking with neutral aromatic residues of the receptor are also important for high affinity and antagonist activity. (3) While the presence of an N9H enhances receptor affinity, interaction with an anionic receptor site does not appear essential for antagonist activity.  相似文献   
98.
Previous work has shown that in many mycelial fermentations the predominant morphological form is clumps (aggregates) which cannot be further reduced by dilution. During fermentation, the clump size and shape is affected by fragmentation, which in turn depends on agitation conditions. This paper addresses the question of whether mycelial aggregation can also occur during a fermentation. The dynamics of changes in mycelial morphology due to aggregation were investigated in 5.3-L chemostat cultures of Aspergillus oryzae by imposing a step decrease in agitation speed from 1,000 to 550 rpm under conditions of controlled non-limiting dissolved oxygen tension, with a steady-state biomass concentration of 2 g/L. The mean projected area (size) of the mycelia, measured using image analysis, increased from 5,300녘 µm2 (at 1,000 rpm) to 9,400덌 µm2 (at 550 rpm). This change occurred too rapidly for it to be solely caused by mycelial growth. Instead, it is proposed that the increase in size was indeed due to aggregation, probably due to physico-chemical affects such as hydrophobicity or charge interactions. Aggregation was also shown to occur in 4-L aerated batch cultures at higher biomass concentrations (5.3 and 11.2 g/L) in which the agitation speed was decreased from 1,100 to 550 rpm. Experiments were also conducted off-line in a mixing vessel in the absence of oxygen. In this case, aggregation was not observed. Thus, though the cause of aggregation at this stage is not clear, aerobic metabolism appears to be required.  相似文献   
99.
This article mainly addresses the issues associated with the engineering of large-scale free suspension culture in agitated bioreactors >10,000 L because they have become the system of choice industrially. It is particularly concerned with problems that become increasingly important as the scale increases. However, very few papers have been written that are actually based on such large-scale studies and the few that do rarely address any of the issues quantitatively. Hence, it is necessary very often to extrapolate from small-scale work and this review tries to pull the two types of study together. It is shown that ‘shear sensitivity’ due to agitation and bursting bubbles is no longer considered a major problem. Homogeneity becomes increasingly important with respect to pH and nutrients at the largest scale and sub-surface feeding is recommended despite ‘cleaning in place’ concerns. There are still major questions with cell retention/recycle systems at these scales, either because of fouling, of capacity or of potential and different ‘shear sensitivity’ questions. Fed-batch operation gives rise to cell densities that have led to the use of oxygen and enriched air to meet oxygen demands. This strategy, in turn, gives rise to a CO2 evolution rate that impacts on pH control, pCO2 and osmolality. These interactions are difficult to resolve but if higher sparge and agitation intensities could be used to achieve the necessary oxygen transfer, the problem would largely disappear. Thus, the perception of ‘shear sensitivity’ is still impacting on the development of animal cell culture at the commercial scale. Microcarrier culture is also briefly addressed. Finally, some recommendations for bioreactor configuration and operating strategy are given.  相似文献   
100.
Advanced cell and gene therapies such as chimeric antigen receptor T-cell immunotherapies (CAR-T), present a novel therapeutic modality for the treatment of acute and chronic conditions including acute lymphoblastic leukemia and non-Hodgkin lymphoma. However, the development of such immunotherapies requires the manufacture of large numbers of T-cells, which remains a major translational and commercial bottleneck due to the manual, small-scale, and often static culturing systems used for their production. Such systems are used because there is an unsubstantiated concern that primary T-cells are shear sensitive, or prefer static conditions, and therefore do not grow as effectively in more scalable, agitated systems, such as stirred-tank bioreactors, as compared with T-flasks and culture bags. In this study, we demonstrate that not only T-cells can be cultivated in an automated stirred-tank bioreactor system (ambr® 250), but that their growth is consistently and significantly better than that in T-flask static culture, with equivalent cell quality. Moreover, we demonstrate that at progressively higher agitation rates over the range studied here, and thereby, higher specific power inputs (P/M W kg−1), the higher the final viable T-cell density; that is, a cell density of 4.65 ± 0.24 × 106 viable cells ml−1 obtained at the highest P/M of 74 × 10−4 W kg−1 in comparison with 0.91 ± 0.07 × 106 viable cells ml−1 at the lowest P/M of 3.1 × 10−4 W kg−1. We posit that this improvement is due to the inability at the lower agitation rates to effectively suspend the Dynabeads®, which are required to activate the T-cells; and that contact between them is improved at the higher agitation rates. Importantly, from the data obtained, there is no indication that T-cells prefer being grown under static conditions or are sensitive to fluid dynamic stresses within a stirred-tank bioreactor system at the agitation speeds investigated. Indeed, the opposite has proven to be the case, whereby, the cells grow better under higher agitation speeds while maintaining their quality. This study is the first demonstration of primary T-cell ex vivo manufacture activated by Dynabeads® in an automated stirred-tank bioreactor system such as the ambr® 250 and the findings have the potential to be applied to multiple other cell candidates for advanced therapy applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号