首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
  2024年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1984年   1篇
  1980年   1篇
  1979年   3篇
  1947年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
11.
Continuous culture fermentations of Escherichia coli W3110 have been carried out at controlled dissolved oxygen levels of 40% and 10% of saturation. Satisfactory and reproducible results were obtained. Agitation speeds of 400 and 1200 rpm at an aeration rate of 1 vvm have been used as well as an aeration rate of 3 vvm at 400 rpm. The upper levels of these variables represent much higher agitation and aeration intensities than those normally used in practical fermentations. The fermentations were monitored by mass spectrometry and optical density, and cell samples were studied by flow cytometry, SEM, and TEM. Protocols were developed so the state of both cell membranes and cell size could be measured by flow cytometry. Under all the conditions of agitation and aeration, flow cytometric analysis indicated that both cell membranes were intact and that a cytoplasmic membrane potential existed; also the cell size did not change, results confirmed by SEM and TEM. There were no detectable changes in off-gas analysis or optical density during the continuous fermentation nor in the cell structure as revealed by SEM or TEM, except at the highest agitation intensity. Under the latter conditions, after 7 h, the outer polysaccharide layer on the cell was stripped away. It is concluded that any changes in biological performance of this E. coli cell line due to variations in agitation or aeration intensity or scale of operation cannot be attributed to fluid dynamic stresses associated with the turbulence generated by impellers or with bursting bubbles.  相似文献   
12.
The use of a rapeseed oil emulsion feed, produced by a phase inversion temperature (PIT) process, produced more biomass, gave a 3-fold increase in oil utilisation and a higher oxytetracycline titre but a higher residual oil concentration when compared to a conventional fed-batch Streptomyces rimosus process fed with crude rapeseed oil. Importantly, microbial utilisation of the surfactant was confirmed for the first time.  相似文献   
13.
14.
Gomphonema parvulum is a cosmopolitan freshwater diatom that is used as an indicator in water quality biomonitoring. In this study, we report the culturing of two geographically separated isolates from southeastern North America, their morphology, and the sequencing and assembly of their mitochondrial and chloroplast genomes. Morphologically, both strains fit G. parvulum sensu lato, but the frustules from a protected habitat in South Carolina were smaller than those cited in the historic data of this species from the same location as well as a second culture from Virginia. Phylogenetic analyses using the rbcL gene placed both within a clade with G. parvulum. Genetic markers, including full chloroplast and mitochondrial genomes and the nuclear small subunit rRNA gene region were assembled from each isolate. The organellar genomes of the two strains varied slightly in size due to small differences in intergenic regions with chloroplast genomes of 121,035 bp and 121,482 bp and mitochondrial genomes of 34,639 bp and 34,654 bp. The intraspecific pairwise identities of the chloroplast and mitochondrial genomes of these two isolates were 97.9% and 95.4%, respectively. Multigene phylogenetic analysis demonstrated a close relationship between G. parvulum, Gomphoneis minuta, and Didymosphenia geminata.  相似文献   
15.
Brewing fermentations have traditionally been undertaken without the use of mechanical agitation, with mixing being provided only by the fluid motion induced by the CO2 evolved during the batch process. This approach has largely been maintained because of the belief in industry that rotating agitators would damage the yeast. Recent studies have questioned this view. At the bench scale, brewer’s yeast is very robust and withstands intense mechanical agitation under aerobic conditions without observable damage as measured by flow cytometry and other parameters. Much less intense mechanical agitation also decreases batch fermentation time for anaerobic beer production by about 25% compared to mixing by CO2 evolution alone with a small change in the concentration of the different flavour compounds. These changes probably arise for two reasons. Firstly, the agitation increases the relative velocity and the area of contact between the cells and the wort, thereby enhancing the rate of mass transfer to and from the cells. Secondly, the agitation eliminates spatial variations in both yeast concentration and temperature, thus ensuring that the cells are maintained close to the optimum temperature profile during the whole of the fermentation time. These bench scale studies have recently been supported by results at the commercial scale from mixing by an impeller or by a rotary jet head, giving more consistent production without changes in final flavour. It is suggested that this reluctance of the brewing industry to use (adequate) mechanical agitation is another example where the myth of shear damage has had a detrimental effect on the optimal operation of commercial bioprocessing.  相似文献   
16.
Dependence of mycelial morphology on impeller type and agitation intensity   总被引:8,自引:0,他引:8  
The influence of the agitation conditions on the morphology of Penicillium chrysogenum (freely dispersed and aggregated forms) was examined using radial (Rushton turbines and paddles), axial (pitched blades, propeller, and Prochem Maxflow T), and counterflow impellers (Intermig). Culture broth was taken from a continuous fermentation at steady state and was agitated for 30 min in an ungassed vessel of 1.4-L working volume. The power inputs per unit volume of liquid in the tank, P/V(L), ranged from 0.6 to 6 kW/m(3). Image analysis was used to measure mycelial morphology. To characterize the intensity of the damage caused by different impellers, the mean total hyphal length (freely dispersed form) and the mean projected area (all dispersed types, i.e., also including aggregates) were used. [In this study, breakage of aggregates was taken into account quantitatively for the first time.]At 1.4-L scale and a given P/V(L), changes in the morphology depended significantly on the impeller geometry. However, the morphological data (obtained with different geometries and various P/V(L)) could be correlated on the basis of equal tip speed and two other, less simple, mixing parameters. One is based on the specific energy dissipation rate in the impeller region, which is simply related to P/V(L) and particular impeller geometrical parameters. The other which is developed in this study is based on a combination of the specific energy dissipation rate in the impeller swept volume and the frequency of mycelial circulation through that volume. For convenience, the function arising from this concept is called the "energy dissipation/circulation" function.To test the broader validity of these correlations, scale-up experiments were carried out in mixing tanks of 1.4, 20, and 180 L using a Rushton turbine and broth from a fed-batch fermentation. The energy dissipation/circulation function was a reasonable correlating parameter for hyphal damage over this range of scales, whereas tip speed, P/V(L), and specific energy dissipation rate in the impeller region were poor. Two forms of the energy dissipation/circulation function were considered, one of which additionally allowed for the numbers of vortices behind the blades of each impeller type. Although both forms were successful at correlating the data for the standard impeller designs considered here, there was preliminary evidence that allowing for the vortices would be valuable. (c) 1996 John Wiley & Sons, Inc.  相似文献   
17.
Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost‐effective manufacturing processes. Microcarriers enable the culture of anchorage‐dependent cells in stirred‐tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow‐derived MSC (hBM‐MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM‐MSC1 underwent more cumulative population doublings over three passages in comparison to hBM‐MSC2 and hBM‐MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM‐MSC expansion. HBM‐MSCs were successfully harvested and characterised, demonstrating hBM‐MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier‐based allogeneic cell therapy manufacture.  相似文献   
18.
Summary A satellite mediated station for monitoring nanoclimate (climate in the millimeter range) data, suitable for use in polar regions is described. The station, located in the Ross desert of Antarctica, has been in operation for more than 3 years, measuring rock temperatures, air temperature, light, snow, wind, and moisture. The data indicate that biological activity in the cryptoendolithic microbial ecosystem is limited to the period from mid November to mid February. The total number of hours of biological activity, based on assumptions of the minimum light, temperature and moisture requirements of the community, is less than 1000 h/year. The time above 0°C, representing more nearly optimal conditions, is between 50 and 550 h/year, depending on the orientation of the surface.Ross desert is an unofficial name for the ice-free region between 160° and 164°E and 76°30 and 78°30S. This area is more generally referred to as the dry valleys  相似文献   
19.
20.
Combination therapies aim to overcome the limitations of individual drugs by selecting diverse targets of action to enhance effectiveness synergistically. This article reviews the principles of combination therapy and its applications for benign prostatic hyperplasia and overactive bladder. It then examines pathophysiological, pharmacological, and clinical evidence for currently available drug and device combinations for erectile dysfunction that has not responded to first-line, single-agent therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号