首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   18篇
  164篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   10篇
  2012年   8篇
  2011年   9篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   7篇
  2006年   8篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1995年   2篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1971年   2篇
  1970年   1篇
  1967年   1篇
  1965年   1篇
  1963年   1篇
  1960年   1篇
  1959年   4篇
  1954年   1篇
排序方式: 共有164条查询结果,搜索用时 15 毫秒
11.
Thrombin is a potent platelet agonist that activates platelets and other cells of the cardiovascular system by cleaving its G-protein-coupled receptors, protease-activated receptor 1 (PAR1), PAR4, or both. We now show that cleaving PAR1 and PAR4 with α-thrombin induces heterodimer formation. PAR1-PAR4 heterodimers were not detected when unstimulated; however, when the cells were stimulated with 10 nm α-thrombin, we were able to detect a strong interaction between PAR1 and PAR4 by bioluminescence resonance energy transfer. In contrast, activating the receptors without cleavage using PAR1 and PAR4 agonist peptides (TFLLRN and AYPGKF, respectively) did not enhance heterodimer formation. Preventing PAR1 or PAR4 cleavage with point mutations or hirugen also prevented the induction of heterodimers. To further characterize the PAR1-PAR4 interactions, we mapped the heterodimer interface by introducing point mutations in transmembrane helix 4 of PAR1 or PAR4 that prevented heterodimer formation. Finally, we show that mutations in PAR1 or PAR4 at the heterodimer interface prevented PAR1-assisted cleavage of PAR4. These data demonstrate that PAR1 and PAR4 require allosteric changes induced via receptor cleavage by α-thrombin to mediate heterodimer formation, and we have determined the PAR1-PAR4 heterodimer interface. Our findings show that PAR1 and PAR4 have dynamic interactions on the cell surface that should be taken into account when developing and characterizing PAR antagonists.  相似文献   
12.
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.  相似文献   
13.
We recently developed a mouse model with a single functional allele of Serca2 (Serca2+/-) that shows impaired cardiac contractility and relaxation without overt heart disease. The goal of this study was to test the hypothesis that chronic reduction in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2 levels in combination with an increased hemodynamic load will result in an accelerated pathway to heart failure. Age-matched wild-type and Serca2+/- mice were subjected to 10 wk of pressure overload via transverse aortic coarctation surgery. Cardiac hypertrophy and heart failure were assessed by echocardiography, gravimetry/histology, hemodynamics, and Western blotting analyses. Our results showed that approximately 64% of coarcted Serca2+/- mice were in heart failure compared with 0% of coarcted wild-type mice (P < 0.05). Overall, morbidity and mortality were greatly increased in Serca2+/- mice under pressure overload. Echocardiography assessment revealed a significant increase in left ventricular (LV) mass, and LV hypertrophy in coarcted Serca2+/- mice converted from a concentric to an eccentric pattern, similar to that seen in human heart failure. Coarcted Serca2+/- mice had decreased contractile/systolic and relaxation/diastolic performance and/or function compared with coarcted wild-type mice (P < 0.05), despite a similar duration and degree of pressure overload. SERCA2a protein levels were significantly reduced (>50%) in coarcted Serca2+/- mice compared with noncoarcted and coarcted wild-type mice. Our findings suggest that reduction in SERCA2 levels in combination with an increased hemodynamic load results in an accelerated pathway to heart failure.  相似文献   
14.
OBJECTIVE: To investigate the number of cells to be counted in cytocentrifuged bronchoalveolar lavage (BAL) fluid preparations in order to reach a reliable enumeration of each cell type. STUDY DESIGN: A total of 136 BAL fluid samples for patients with suspected pneumonia or interstitial lung disease were investigated. Differential cell counts were performed on May-Grünwald-Giemsa-stained cytocentrifuged preparations by 2 observers, each differentiating 500 cells. Reliability for the enumeration of each cell type was expressed as phi value, as calculated in generalizability theory. RESULTS: For polymorphonuclear neutrophils (PMNs), alveolar macrophages, lymphocytes and eosinophils, an acceptable phi value of > or = .95 was reached at a count of 300 cells by 1 observer. Mast cells reached a phi value of only .674 at a count of 500 cells by 1 observer, precluding a reliable count. At a count of 500 cells by 1 observer, squamous epithelial cells, bronchial epithelial cells and plasma cells displayed phi values of .868, .903 and .816, respectively. CONCLUSION: At a count of 300 cells, PMNs, alveolar macrophages, lymphocytes and eosinophils are reliably enumerated in cytocentrifuged BAL fluid samples.  相似文献   
15.
Heavy exertion has acute and chronic influences on systemic immunity. In the resting state, the immune systems of athletes and non-athletes are more similar than disparate with the exception of NK cell activity, which tends to be elevated in athletes. Many components of the immune system exhibit adverse change after prolonged, heavy exertion. These immune changes occur in several compartments of the immune system and body (e.g. the skin, upper respiratory tract mucosal tissue, lung, blood and muscle). Although still open to interpretation, most exercise immunologists believe that during this 'open window' of impaired immunity (which may last between 3 and 72 h, depending on the immune measure) viruses and bacteria may gain a foothold, increasing the risk of subclinical and clinical infection. The infection risk may be amplified when other factors related to immune function are present, including exposure to novel pathogens during travel, lack of sleep, severe mental stress, malnutrition or weight loss.  相似文献   
16.
Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.  相似文献   
17.
Expansion of Bean Leaves and its Suppression by Salinity   总被引:11,自引:4,他引:7  
  相似文献   
18.
NHE3 Na(+)/H(+) exchanger knockout (Nhe3(-/-)) mice have severe absorptive deficits in the kidney proximal tubule and intestinal tract. The resulting hypovolemia has confounded efforts to carefully evaluate the specific effects of NHE3 deficiency on kidney function. Development of mice with transgenic expression of NHE3 in the small intestine (tgNhe3(-/-)) has allowed us to analyze the role of renal NHE3 in overall maintenance of blood pressure, pressure natriuresis, and autoregulation of both glomerular filtration rate (GFR) and renal blood flow (RBF). Ambulatory blood pressure, measured by telemetry, was lower in tgNhe3(-/-) mice than in wild-type controls (tgNhe3(+/+)) when the mice were maintained on a normal NaCl diet but was normalized when they were provided with a high NaCl intake. Furthermore, administration of the AT1-receptor blocker losartan showed that circulating ANG II plays a major role in maintaining blood pressure in tgNhe3(-/-) mice fed normal NaCl but not in those receiving high NaCl. Clearance studies revealed a blunted pressure-natriuresis response in tgNhe3(-/-) mice at lower blood pressures but a robust response at higher blood pressures. Autoregulation of GFR and RBF was normal in tgNhe3(-/-) mice. These results show that dietary NaCl loading normalizes blood pressure in awake tgNhe3(-/-) mice and that alterations in NHE3 activity are not essential for normal autoregulation of GFR and RBF. Furthermore, the data strongly support the hypothesis that NHE3 plays an important role in the diuretic and natriuretic responses to increases in blood pressure but also show that mechanisms not involving NHE3 mediate pressure natriuresis in the higher range of blood pressures studied.  相似文献   
19.
20.
Nieman MT  Schmaier AH 《Biochemistry》2007,46(29):8603-8610
Investigations determined the critical amino acids for alpha-thrombin's interaction with protease-activated receptors 1 and 4 (PAR1 and PAR4, respectively) at the thrombin cleavage site. Recombinant PAR1 wild-type (wt) exodomain was cleaved by alpha-thrombin with a Km of 28 microM, a kcat of 340 s-1, and a kcat/Km of 1.2 x 10(7). When the P4 or P2 position was mutated to alanine, PAR1-L38A or PAR1-P40A, respectively, the Km was unchanged, 29 or 23 microM, respectively; however, the kcat and kcat/Km were reduced in each case. In contrast, when Asp39 at P3 was mutated to alanine, PAR1-D39A, Km and kcat were both reduced approximately 3-fold, making the kcat/Km the same as that of PAR1-wt exodomain. Recombinant PAR4-wt exodomain was cleaved by alpha-thrombin with a Km of 61 microM, a kcat of 17 s-1, and a kcat/Km of 2.8 x 10(5). When the P5 or P4 position was mutated to alanine, PAR4-L43A or PAR4-P44A, respectively, there was no change in the Km (69 or 56 microM, respectively); however, the kcat was lowered in each case (9.7 or 7.7 s-1, respectively). Mutation of the P2 position (PAR4-P46A) also had no effect on the Km but markedly lowered the kcat and kcat/Km approximately 35-fold. PAR1-wt exodomain and P4 and P3 mutants were noncompetitive inhibitors of alpha-thrombin hydrolyzing Sar-Pro-Arg-pNA. However, PAR1-P40A displayed a mixed type of inhibition. Mutation of P4, P3, or P2 had no effect on the Ki. All PAR4 exodomains were competitive inhibitors of alpha-thrombin. Mutation of P5, P4, or P2 had no effect on the Ki. These investigations show that Leu at P4 in PAR1 or P5 in PAR4 critically influences the kinetics of alpha-thrombin binding and cleavage of PAR1 and PAR4 exodomains. It also implies that factors other than the hirudin-like binding region on PAR1 exodomain predominate in influencing PAR1 cleavage on cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号