首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4666篇
  免费   470篇
  5136篇
  2022年   34篇
  2021年   55篇
  2020年   44篇
  2019年   55篇
  2018年   56篇
  2017年   80篇
  2016年   88篇
  2015年   149篇
  2014年   190篇
  2013年   203篇
  2012年   276篇
  2011年   257篇
  2010年   181篇
  2009年   169篇
  2008年   229篇
  2007年   205篇
  2006年   190篇
  2005年   204篇
  2004年   212篇
  2003年   202篇
  2002年   166篇
  2001年   180篇
  2000年   149篇
  1999年   145篇
  1998年   82篇
  1997年   81篇
  1996年   61篇
  1995年   45篇
  1994年   65篇
  1993年   45篇
  1992年   86篇
  1991年   73篇
  1990年   73篇
  1989年   71篇
  1988年   57篇
  1987年   41篇
  1986年   40篇
  1985年   67篇
  1984年   43篇
  1983年   35篇
  1982年   40篇
  1981年   26篇
  1980年   25篇
  1979年   42篇
  1978年   23篇
  1977年   23篇
  1976年   24篇
  1974年   29篇
  1973年   24篇
  1972年   22篇
排序方式: 共有5136条查询结果,搜索用时 0 毫秒
91.
Renewed examinatinon with improved banding techniques of a boy previously reported to have the karyotype 46, XY,del(12)(p11) revealed a translocation 46, XY,t(10;12)(p13;p11), and reexamination of a boy previously reported to have the karyotype 46,XY/46,XY,del(5)(p13) showed the same mosaicism, but with a significantly lower frequency of cells with del(5)(p13), 8% compared with 23% at the time of birth. The decrease of the frequency of cells with chromosome abnormality in mixoploids during the first years of life as found in the present case as well as in prevously reported cases is discussed.  相似文献   
92.
93.
The topology of metabolic networks is recognisably modular with modules weakly connected apart from sharing a pool of currency metabolites. Here, we defined modules as sets of reversible reactions isolated from the rest of metabolism by irreversible reactions except for the exchange of currency metabolites. Our approach identifies topologically independent modules under specific conditions associated with different metabolic functions. As case studies, the E.coli iJO1366 and Human Recon 2.2 genome-scale metabolic models were split in 103 and 321 modules respectively, displaying significant correlation patterns in expression data. Finally, we addressed a fundamental question about the metabolic flexibility conferred by reversible reactions: “Of all Directed Topologies (DTs) defined by fixing directions to all reversible reactions, how many are capable of carrying flux through all reactions?”. Enumeration of the DTs for iJO1366 model was performed using an efficient depth-first search algorithm, rejecting infeasible DTs based on mass-imbalanced and loopy flux patterns. We found the direction of 79% of reversible reactions must be defined before all directions in the network can be fixed, granting a high degree of flexibility.  相似文献   
94.
Genome‐scale metabolic models (GEMs) are widely used to calculate metabolic phenotypes. They rely on defining a set of constraints, the most common of which is that the production of metabolites and/or growth are limited by the carbon source uptake rate. However, enzyme abundances and kinetics, which act as limitations on metabolic fluxes, are not taken into account. Here, we present GECKO, a method that enhances a GEM to account for enzymes as part of reactions, thereby ensuring that each metabolic flux does not exceed its maximum capacity, equal to the product of the enzyme's abundance and turnover number. We applied GECKO to a Saccharomyces cerevisiae GEM and demonstrated that the new model could correctly describe phenotypes that the previous model could not, particularly under high enzymatic pressure conditions, such as yeast growing on different carbon sources in excess, coping with stress, or overexpressing a specific pathway. GECKO also allows to directly integrate quantitative proteomics data; by doing so, we significantly reduced flux variability of the model, in over 60% of metabolic reactions. Additionally, the model gives insight into the distribution of enzyme usage between and within metabolic pathways. The developed method and model are expected to increase the use of model‐based design in metabolic engineering.  相似文献   
95.
Over the past decade a number of bioinformatics tools have been developed that use genomic sequences as input to predict to which parts of a microbe the immune system will react, the so-called epitopes. Many predicted epitopes have later been verified experimentally, demonstrating the usefulness of such predictions. At the same time, simulation models have been developed that describe the dynamics of different immune cell populations and their interactions with microbes. These models have been used to explain experimental findings where timing is of importance, such as the time between administration of a vaccine and infection with the microbe that the vaccine is intended to protect against. In this paper, we outline a framework for integration of these two approaches. As an example, we develop a model in which HIV dynamics are correlated with genomics data. For the first time, the fitness of wild type and mutated virus are assessed by means of a sequence-dependent scoring matrix, derived from a BLOSUM matrix, that links protein sequences to growth rates of the virus in the mathematical model. A combined bioinformatics and systems biology approach can lead to a better understanding of immune system-related diseases where both timing and genomic information are of importance.  相似文献   
96.

Background

Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively.

Results

We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest.

Conclusions

The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without compromise in image quality or information loss in associated spectra. These results motivate further use of label free microscopy techniques in real-time imaging of live immune cells.  相似文献   
97.
98.
A major challenge in proteomics is to fully identify and characterize the post-translational modification (PTM) patterns present at any given time in cells, tissues, and organisms. Here we present a fast and reliable method ("ModifiComb") for mapping hundreds types of PTMs at a time, including novel and unexpected PTMs. The high mass accuracy of Fourier transform mass spectrometry provides in many cases unique elemental composition of the PTM through the difference DeltaM between the molecular masses of the modified and unmodified peptides, whereas the retention time difference DeltaRT between their elution in reversed-phase liquid chromatography provides an additional dimension for PTM identification. Abundant sequence information obtained with complementary fragmentation techniques using ion-neutral collisions and electron capture often locates the modification to a single residue. The (DeltaM, DeltaRT) maps are representative of the proteome and its overall modification state and may be used for database-independent organism identification, comparative proteomic studies, and biomarker discovery. Examples of newly found modifications include +12.000 Da (+C atom) incorporation into proline residues of peptides from proline-rich proteins found in human saliva. This modification is hypothesized to increase the known activity of the peptide.  相似文献   
99.
100.
F H Nielsen 《FASEB journal》1991,5(12):2661-2667
Definition of specific biochemical functions in higher animals (including humans) for the ultratrace elements boron, silicon, vanadium, nickel, and arsenic still has not been achieved although all of these elements have been described as being essential nutrients. Recently, many new findings from studies using molecular biology techniques, sophisticated equipment, unusual organisms, and newly defined enzymes have revealed possible sites of essential action for these five elements. Based on these findings and the response of animals and/or humans to low intakes of these elements, the following speculations have been presented: 1) Boron has a role that affects cell membrane characteristics and transmembrane signaling. 2) Silicon is necessary for the association between cells and one or more macromolecules such as osteonectin, which affects cartilage composition and ultimately cartilage calcification. 3) Vanadium reacts with hydrogen peroxide to form a pervanadate that is required to catalyze the oxidation of halide ions and/or stimulate the phosphorylation of receptor proteins. 4) Nickel is needed for the CO2-fixation to propionyl-CoA to form D-methylmalonyl-CoA. 5) Arsenic has an important role in the conversion of methionine to its metabolites taurine, labile methyl, and the polyamines. If any of these speculations are found to be true, the element involved will be firmly established as having a nutritional requirement because the body obviously cannot synthesize it. Based on animal findings, the dietary requirement is likely to be small; that is, expressed in micrograms per day.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号