首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9568篇
  免费   857篇
  国内免费   4篇
  10429篇
  2023年   53篇
  2022年   104篇
  2021年   187篇
  2020年   122篇
  2019年   157篇
  2018年   178篇
  2017年   192篇
  2016年   322篇
  2015年   496篇
  2014年   552篇
  2013年   673篇
  2012年   740篇
  2011年   671篇
  2010年   441篇
  2009年   379篇
  2008年   557篇
  2007年   564篇
  2006年   529篇
  2005年   476篇
  2004年   476篇
  2003年   441篇
  2002年   444篇
  2001年   97篇
  2000年   78篇
  1999年   103篇
  1998年   115篇
  1997年   80篇
  1996年   86篇
  1995年   74篇
  1994年   57篇
  1993年   74篇
  1992年   67篇
  1991年   52篇
  1990年   41篇
  1989年   45篇
  1988年   39篇
  1987年   36篇
  1986年   38篇
  1985年   39篇
  1984年   46篇
  1983年   40篇
  1982年   40篇
  1981年   36篇
  1980年   28篇
  1979年   31篇
  1978年   37篇
  1977年   26篇
  1976年   39篇
  1974年   20篇
  1973年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
The chemokine family forms two different types of homodimer despite members sharing nearly identical folds. To study the formation of quaternary structure in this family, rational mutagenesis was employed on a representative member of each subfamily (MIP-1beta and IL-8). The variants were studied by analytical ultracentrifugation and NMR, and it was determined that formation of a folded monomer from a natural chemokine dimer is reasonably facile, while conversion between dimer types is not. Monomeric variants of MIP-1beta and IL-8 were randomly mutated and a lambda phage-based selection system was employed in a novel way to screen for dimerization. A total of 6,000,000 random mutants were screened, but no dimers were formed, suggesting again that the chemokine fold is robust and amenable to sequence variation, while the chemokine dimer is much more difficult to attain. This work represents a biophysical analysis of an array of chemokine quaternary state variants.  相似文献   
952.
The coordinated activities of chaperones and proteases that supervise protein folding and degradation are important factors for deciding the fate of proteins whose folding is impaired by missense variations. We have studied the role of Lon and ClpXP proteases in handling of wild-type and a folding-impaired disease-associated variant (R28C) of the mitochondrial enzyme medium-chain acyl-CoA dehydrogenase (MCAD). Using an Escherichia coli model system, we co-overexpressed the MCAD variants and the respective proteases at two conditions: at 31 degrees C where R28C MCAD protein folds partially and at 37 degrees C where it misfolds and aggregates. Co-overexpression of Lon protease considerably accelerated the degradation rate of a pool of R28C variant MCAD synthesised during a 30min pulse and counteracted accumulation of aggregates at 37 degrees C, whereas increasing the amounts of ClpXP protease had no clear effect. Co-overexpression of either Lon or ClpXP protease markedly decreased the steady state levels of both wild-type and R28C mutant MCAD at 37 degrees C but not at 31 degrees C. Our results suggest that Lon is more efficient than ClpXP in elimination of non-native MCAD protein conformations, and accordingly, that Lon can recognise a broader spectrum of MCAD protein conformations.  相似文献   
953.
Sex allocation theory predicts that parents should bias their reproductive investments toward the offspring sex generating the greatest fitness return. When females are the heterogametic sex (e.g., ZW in butterflies, some lizards, and birds), production of daughters is associated with an increased risk of offspring inviability due to the expression of paternal, detrimental recessives on the Z chromosome. Thus, daughters should primarily be produced when mating with partners of high genetic quality. When female sand lizards (Lacerta agilis) mate with genetically superior males, exhibiting high MHC Class I polymorphism, offspring sex ratios are biased towards daughters, possibly due to recruitment of more Z-carrying oocytes when females have assessed the genetic quality of their partners. If our study has general applicability across taxa, it predicts taxon-specific sex allocation effects depending on which sex is the heterogametic one.  相似文献   
954.
The membrane-disruptive antimicrobial peptide PGLa is found to change its orientation in a dimyristoyl-phosphatidylcholine bilayer when its concentration is increased to biologically active levels. The alignment of the alpha-helix was determined by highly sensitive solid-state NMR measurements of (19)F dipolar couplings on CF(3)-labeled side chains, and supported by a nonperturbing (15)N label. At a low peptide/lipid ratio of 1:200 the amphiphilic peptide resides on the membrane surface in the so-called S-state, as expected. However, at high peptide concentration (>/=1:50 molar ratio) the helix axis changes its tilt angle from approximately 90 degrees to approximately 120 degrees , with the C-terminus pointing toward the bilayer interior. This tilted "T-state" represents a novel feature of antimicrobial peptides, which is distinct from a membrane-inserted I-state. At intermediate concentration, PGLa is in exchange between the S- and T-state in the timescale of the NMR experiment. In both states the peptide molecules undergo fast rotation around the membrane normal in liquid crystalline bilayers; hence, large peptide aggregates do not form. Very likely the obliquely tilted T-state represents an antiparallel dimer of PGLa that is formed in the membrane at increasing concentration.  相似文献   
955.
The alignment of pyrene in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer was investigated using two different approaches, namely solid-state (2)H-NMR spectroscopy and molecular dynamics (MD) simulations. Quadrupolar splittings from (2)H-NMR spectra of deuterated pyrene-d(10) in an oriented lipid bilayer give information about the orientation of C-D bonds with respect to the membrane normal. From MD simulations, geometric information is accessible via trajectories. By defining molecular and bond order parameters, the data from MD trajectories and NMR spectra can be compared straightforwardly. To ensure that the results from both methods are comparable, parameters of the experimental and the simulation setup were chosen to be as similar as possible. From simulations, we saw that pyrene prefers a position inside the lipid membrane near the headgroups and has no tendency to diffuse from one monolayer of the membrane to the other. The results from simulation and NMR show that the normal of the molecular plane is aligned nearly perpendicular to the bilayer normal. The long axis of pyrene lies preferentially parallel to the bilayer normal within a range of +/-30 degrees . The results from the two different methods are remarkably consistent. The good agreement can be explained by the fact that the different kind of motions of a pyrene molecule are already averaged within a few nanoseconds, which is the timescale covered by the MD simulation.  相似文献   
956.
Inhibition of canopy tree recruitment beneath thickets of the evergreen shrubs Rhododendron maximum L. and Kalmia latifolia L. has long been observed in Southern Appalachian forests, yet the mechanisms of this process remain unresolved. We present a first-year account of suppression of oak seedlings in relation to Rhododendron and Kalmia basal area, light and resource availability, seedling performance and the rates of seedling damage (i.e., herbivory). We found no evidence of first-year seedling suppression or significant resource deficiencies beneath thickets of K. latifolia in mature mixed hardwood stands. Suppression beneath R. maximum was apparent during the first growing season. We found that seedling biomass, light availability prior to canopy closure, and seedling tissue C:N ratios were negatively correlated with R. maximum basal area. Basal area of R. maximum was positively correlated with seedling mortality rates, soil [Al], and early-growing season leaf herbivory rates. Seedling growth was positively correlated with light and tissue C:N, while negatively correlated with soil [Al]. Overall, our results support the inhibition model of shade-mediated carbon limitation beneath dense understory shrubs and indicate the potential importance of herbivory and aluminum toxicity as components of a suppression mechanism beneath R. maximum thickets. We present a causal model of first year inhibition beneath R. maximum in the context of our findings and the results of prior studies.  相似文献   
957.
Myosin 5a controls insulin granule recruitment during late-phase secretion   总被引:1,自引:0,他引:1  
We have examined the importance of the actin-based molecular motor myosin 5a for insulin granule transport and insulin secretion. Expression of myosin 5a was downregulated in clonal INS-1E cells using RNAinterference. Stimulated hormone secretion was reduced by 46% and single-cell exocytosis, measured by capacitance recordings, was inhibited by 42% after silencing. Silencing of Slac-2c/MYRIP, which links insulin granules to myosin 5a, resulted in similar inhibition of single-cell exocytosis. Antibody inhibition of the myosin 5a-Slac-2c/MYRIP interaction significantly reduced the recruitment of insulin granules for release. The pool of releasable granules independent of myosin 5a activity was estimated to approximately 550 granules. Total internal reflection microscopy was then applied to directly investigate granule recruitment to the plasma membrane. Silencing of myosin 5a inhibited granule recruitment during late phase of insulin secretion. In conclusion, we propose a model where insulin granules are transported through the actin network via both myosin 5a-mediated transport and via passive diffusion, with the former playing the major role during stimulatory conditions.  相似文献   
958.
P pili are protein filaments expressed by uropathogenic Escherichia coli that mediate binding to glycolipids on epithelial cell surfaces, which is a prerequisite for bacterial infection. When a bacterium, attached to a cell surface, is exposed to external forces, the pili, which are composed of approximately 10(3) PapA protein subunits arranged in a helical conformation, can elongate by unfolding to a linear conformation. This property is considered important for the ability of a bacterium to withstand shear forces caused by urine flow. It has hitherto been assumed that this elongation is plastic, thus constituting a permanent conformational deformation. We demonstrate, using optical tweezers, that this is not the case; the unfolding of the helical structure to a linear conformation is fully reversible. It is surmised that this reversibility helps the bacteria regain close contact to the host cells after exposure to significant shear forces, which is believed to facilitate their colonization.  相似文献   
959.

Background  

Distance-based methods are popular for reconstructing evolutionary trees thanks to their speed and generality. A number of methods exist for estimating distances from sequence alignments, which often involves some sort of correction for multiple substitutions. The problem is to accurately estimate the number of true substitutions given an observed alignment. So far, the most accurate protein distance estimators have looked for the optimal matrix in a series of transition probability matrices, e.g. the Dayhoff series. The evolutionary distance between two aligned sequences is here estimated as the evolutionary distance of the optimal matrix. The optimal matrix can be found either by an iterative search for the Maximum Likelihood matrix, or by integration to find the Expected Distance. As a consequence, these methods are more complex to implement and computationally heavier than correction-based methods. Another problem is that the result may vary substantially depending on the evolutionary model used for the matrices. An ideal distance estimator should produce consistent and accurate distances independent of the evolutionary model used.  相似文献   
960.

Background  

MicroRNAs (miRNAs) are endogenous 21 to 23-nucleotide RNA molecules that regulate protein-coding gene expression in plants and animals via the RNA interference pathway. Hundreds of them have been identified in the last five years and very recent works indicate that their total number is still larger. Therefore miRNAs gene discovery remains an important aspect of understanding this new and still widely unknown regulation mechanism. Bioinformatics approaches have proved to be very useful toward this goal by guiding the experimental investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号