首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2348篇
  免费   213篇
  国内免费   1篇
  2023年   10篇
  2022年   19篇
  2021年   35篇
  2020年   25篇
  2019年   41篇
  2018年   33篇
  2017年   36篇
  2016年   80篇
  2015年   123篇
  2014年   136篇
  2013年   150篇
  2012年   208篇
  2011年   153篇
  2010年   114篇
  2009年   83篇
  2008年   127篇
  2007年   134篇
  2006年   137篇
  2005年   126篇
  2004年   112篇
  2003年   115篇
  2002年   127篇
  2001年   26篇
  2000年   16篇
  1999年   25篇
  1998年   34篇
  1997年   18篇
  1996年   20篇
  1995年   19篇
  1994年   21篇
  1993年   24篇
  1992年   23篇
  1991年   17篇
  1990年   9篇
  1989年   9篇
  1988年   12篇
  1987年   9篇
  1986年   15篇
  1985年   7篇
  1984年   12篇
  1982年   8篇
  1981年   7篇
  1980年   11篇
  1979年   8篇
  1978年   7篇
  1977年   8篇
  1976年   17篇
  1974年   5篇
  1973年   8篇
  1967年   5篇
排序方式: 共有2562条查询结果,搜索用时 15 毫秒
891.
Cold tolerance and metabolic responses to freezing of three slug species common in Scandinavia (Arion ater, Arion rufus and Arion lusitanicus) are reported. Autumn collected slugs were cold acclimated in the laboratory and subjected to freezing conditions simulating likely winter temperatures in their habitat. Slugs spontaneously froze at about − 4 °C when cooled under dry conditions, but freezing of body fluids was readily induced at − 1 °C when in contact with external ice crystals. All three species survived freezing for 2 days at − 1 °C, and some A. rufus and A. lusitanicus also survived freezing at − 2 °C. 1H NMR spectroscopy revealed that freezing of body fluids resulted in accumulation of lactate, succinate and glucose. Accumulation of lactate and succinate indicates that ATP production occurred via fermentative pathways, which is likely a result of oxygen depletion in frozen tissues. Glucose increased from about 6 to 22 μg/mg dry tissue upon freezing in A. rufus, but less so in A. ater and A. lusitanicus. Glucose may thus act as a cryoprotectant in these slugs, although the concentrations are not as high as reported for other freeze tolerant invertebrates.  相似文献   
892.
Skeletal muscle contains various muscle fiber types exhibiting different contractile properties based on the myosin heavy chain (MyHC) isoform profile. Muscle fiber type composition is highly variable and influences growth performance and meat quality, but underlying mechanisms regulating fiber type composition remain poorly understood. The aim of the present work was to develop a model based on muscle satellite cell culture to further investigate the regulation of adult MyHC isoforms expression in pig skeletal muscle. Satellite cells were harvested from the mostly fast-twitch glycolytic longissimus (LM) and predominantly slow-twitch oxidative rhomboideus (RM) muscles of 6-week-old piglets. Satellite cells were allowed to proliferate up to 80% confluence, reached after 7 day of proliferation (D7), and then induced to differentiate. Kinetics of proliferation and differentiation were similar between muscles and more than 95% of the cells were myogenic (desmin positive) at D7 with a fusion index reaching 65±9% after 4 day of differentiation. One-dimensional SDS polyacrylamide gel electrophoresis revealed that satellite cells from both muscles only expressed the embryonic and fetal MyHC isoforms in culture, without any of the adult MyHC isoforms that were expressed in vivo. Interestingly, triiodothyronine (T3) induced de novo expression of adult fast and α-cardiac MyHC in vitro making our culture system a valuable tool to study de novo expression of adult MyHC isoforms and its regulation by intrinsic and/or extrinsic factors.  相似文献   
893.
Small interfering RNAs (siRNAs) are promising new active compounds in gene medicine but the induction of non-specific immune responses following their delivery continues to be a serious problem. With the purpose of avoiding such effects chemically modified siRNAs are tested in screening assay but often only examining the expression of specific immunologically relevant genes in selected cell populations typically blood cells from treated animals or humans. Assays using a relevant physiological state in biological models as read-out are not common. Here we use a fish model where the innate antiviral effect of siRNAs is functionally monitored as reduced mortality in challenge studies involving an interferon sensitive virus. Modifications with locked nucleic acid (LNA), altritol nucleic acid (ANA) and hexitol nucleic acid (HNA) reduced the antiviral protection in this model indicative of altered immunogenicity. For LNA modified siRNAs, the number and localization of modifications in the single strands was found to be important and a correlation between antiviral protection and the thermal stability of siRNAs was found. The previously published sisiRNA will in some sequences, but not all, increase the antiviral effect of siRNAs. The applied fish model represents a potent tool for conducting fast but statistically and scientifically relevant evaluations of chemically optimized siRNAs with respect to non-specific antiviral effects in vivo.  相似文献   
894.
α-Synuclein is abundantly present in Lewy bodies, characteristic of Parkinson's disease. Its exact physiological role has yet to be determined, but mitochondrial membrane binding is suspected to be a key aspect of its function. Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling allowed for a locally resolved analysis of the protein-membrane binding affinity for artificial phospholipid membranes, supported by a study of binding to isolated mitochondria. The data reveal that the binding affinity of the N-terminus is nonuniform.  相似文献   
895.
The aim of this study was to evaluate the measurement of the total splanchnic blood flow (SBF) using a clinical diagnostic method based on Fick's principle and hepatic extraction of 99mTc-mebrofenin (99mTc-MBF) compared with a paraaminohippuric acid (pAH) dilution method in a porcine model. Another aim was to investigate whether enterohepatic cycling of 99mTc-MBF affected the SBF measurement. Five indwelling catheters were placed in each pig (n = 15) in the portal, mesenteric, and hepatic veins, as well as in the aorta and the vena cava. The SBF was measured using both methods. The portal blood flow; the intestinal and hepatic oxygen uptake; the net fluxes of oxygen, lactate, and glucose; and the extraction fraction (EF) of 99mTc-MBF were measured before and for 70 min after feeding. The mean baseline SBF was 2,961 ml/min vs. 2,762 ml/min measured by pAH and 99mTc-MBF, respectively, and increased significantly to 3,977 ml/min and 3,981 ml/min postprandially. The hepatic EF of 99mTc-MBF decreased from 40% at the start of the investigation to 16% 70 min after feeding. The arterial-portal difference in 99mTc-MBF concentration was 0.21% (P = 0.48), indicating no intestinal extraction or metabolism. The clinical method for measuring the SBF based on hepatic 99mTc-MBF extraction is robust compared with the indicator dilution method, despite the decrease seen in hepatic extraction of 99mTc-MBF. Because there was no difference in the content of 99mTc-MBF between the arterial and portal vein plasma, the SBF can be calculated from an arterial and a hepatic vein sample.  相似文献   
896.
897.
ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are a class of non-protein-coding genes that play a crucial regulatory role in mammalian development and disease. Whereas a large number of miRNAs have been annotated at the structural level during the latest years, functional annotation is sparse. Actinobacillus pleuropneumoniae (APP) causes serious lung infections in pigs. Severe damage to the lungs, in many cases deadly, is caused by toxins released by the bacterium and to some degree by host mediated tissue damage. However, understanding of the role of microRNAs in the course of this infectious disease in porcine is still very limited. RESULTS: In this study, the RNA extracted from visually unaffected and necrotic tissue from pigs infected with Actinobacillus pleuropneumoniae was subjected to small RNA deep sequencing. We identified 169 conserved and 11 candidate novel microRNAs in the pig. Of these, 17 were significantly up-regulated in the necrotic sample and 12 were down-regulated. The expression analysis of a number of candidates revealed microRNAs of potential importance in the innate immune response. MiR-155, a known key player in inflammation, was found expressed in both samples. Moreover, miR-664-5p, miR-451 and miR-15a appear as very promising candidates for microRNAs involved in response to pathogen infection. CONCLUSIONS: This is the first study revealing significant differences in composition and expression profiles of miRNAs in lungs infected with a bacterial pathogen. Our results extend annotation of microRNA in pig and provide insight into the role of a number of microRNAs in regulation of bacteria induced immune and inflammatory response in porcine lung.  相似文献   
898.
Post-translational modifications (PTMs) contribute significantly to the complexity of proteins. PTMs may vary in certain patterns according to diseases and microenviroments making them potential markers for pathological processes. Human transthyretin (TTR) is a transporter of thyroxine and retinol in blood and cerebrospinal fluid (CSF). A single free cysteine thiol group in TTR possesses the ability to form mixed disulfides potentially related to diseases such as TTR amyloidosis and Alzheimer's disease (AD). Additionally, TTR-Cys10 S-thiolations might mirror the oxidative stress and redox balance of CSF. Here we describe a quick and gentle method for immunoprecipitating (IP) TTR from CSF with minimal introduction of sample-handling artifacts. A high-resolution mass spectrometer (LTQ-Orbitrap XL) was used in a simple setup with direct infusion that generates data suitable for confident assignment of TTR isoforms and validation of the protocol. Moreover, we demonstrate how simple storage of CSF at 4°C induces major oxidative modifications of TTR. Using the optimized method, we show data from a limited number of mild cognitive impairment (MCI) and AD patients. The protocol controls and minimizes the introduction of sample-handling artifacts during purification of TTR isoforms for high-resolution MS analysis.  相似文献   
899.
Ma DK  Ringstad N 《生物学前沿》2012,7(3):246-253
Aerobic metabolism is fundamental for almost all animal life.Cellular consumption of oxygen (O2) and production of carbon dioxide (CO2) signal metabolic states and physiologic stresses.These respirator...  相似文献   
900.
Free-living microalgae from the dinoflagellate genus Karlodinium are known to form massive blooms in eutrophic coastal waters worldwide and are often associated with fish kills. Natural bloom populations, recently shown to consist of the two mixotrophic and toxic species Karlodinium armiger and Karlodinium veneficum have caused fast paralysis and mortality of finfish and copepods in the laboratory, and have been associated with reduced metazooplankton biomass in-situ. Here we show that a strain of K. armiger (K-0688) immobilises the common marine copepod Acartia tonsa in a density-dependent manner and collectively ingests the grazer to promote its own growth rate. In contrast, four strains of K. veneficum did not attack or affect the motility and survival of the copepods. Copepod immobilisation by the K. armiger strain was fast (within 15 min) and caused by attacks of swarming cells, likely through the transfer and action of a highly potent but uncharacterised neurotoxin. The copepods grazed and reproduced on a diet of K. armiger at densities below 1000, cells ml−1, but above 3500 cells ml−1 the mixotrophic dinoflagellates immobilised, fed on and killed the copepods. Switching the trophic role of the microalgae from prey to predator of copepods couples population growth to reduced grazing pressure, promoting the persistence of blooms at high densities. K. armiger also fed on three other metazoan organisms offered, suggesting that active predation by mixotrophic dinoflagellates may be directly involved in causing mortalities at several trophic levels in the marine food web.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号