首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2145篇
  免费   130篇
  国内免费   129篇
  2024年   3篇
  2023年   28篇
  2022年   54篇
  2021年   134篇
  2020年   78篇
  2019年   79篇
  2018年   80篇
  2017年   50篇
  2016年   91篇
  2015年   126篇
  2014年   163篇
  2013年   169篇
  2012年   210篇
  2011年   167篇
  2010年   89篇
  2009年   79篇
  2008年   99篇
  2007年   101篇
  2006年   94篇
  2005年   80篇
  2004年   39篇
  2003年   50篇
  2002年   45篇
  2001年   19篇
  2000年   33篇
  1999年   32篇
  1998年   30篇
  1997年   15篇
  1996年   14篇
  1995年   18篇
  1994年   11篇
  1993年   13篇
  1992年   19篇
  1991年   14篇
  1990年   9篇
  1989年   11篇
  1988年   9篇
  1987年   8篇
  1986年   10篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1974年   2篇
  1971年   1篇
  1966年   2篇
  1948年   1篇
排序方式: 共有2404条查询结果,搜索用时 453 毫秒
151.
Due to severe water resource shortage, genetics of and breeding for DT (drought tolerance) in rice (Oryza sativa L.) have become one of the hot research topics. Identification of grain yield QTLs (quantitative trait loci) directly related to the DT trait of rice can provide useful information for breeding new drought‐resistant and water‐saving rice varieties via marker‐assisted selection. A population of 105 advanced BILs (backcross introgression lines) derived from a cross between Zhenshan97B and IRAT109 in Zhenshan97B background were grown under drought stress in a field experiment and phenotypic traits were investigated. The results showed that in the target interval of RM273‐RM255 on chromosome 4, three main‐effect QTLs related to panicle length, panicle number, and spikelet number per panicle were identified (LOD [logarithm of the odds] > 2.0). The panicle length‐related QTL had two loci located in the neighboring intervals of RM17308‐RM17305 and RM17349‐RM17190, which explained 18.80% and 20.42%, respectively, of the phenotypic variation, while the panicle number‐related QTL was identified in the interval of RM1354‐RM17308, explaining 11.47% of the phenotypic variation. As far as the spikelet number per panicle‐related QTL was concerned, it was found to be located in the interval of RM17308‐RM17305, which explained 28.08% of the phenotypic variation. Using the online Plant‐GE query system, a total of 13 matched ESTs (expressed sequence tags) were found in the target region, and of the 13 ESTs, 12 had corresponding predicted genes. For instance, the two ESTs CB096766 and CA765747 were corresponded to the same predicted gene LOC_Os04g46370, while the other four ESTs, CA754286, CB000011, CX056247, and CX056240, were corresponded to the same predicted gene LOC_Os04g46390.  相似文献   
152.
153.
Groups of distinct but related diseases often share common symptoms, which suggest likely overlaps in underlying pathogenic mechanisms. Identifying the shared pathways and common factors among those disorders can be expected to deepen our understanding for them and help designing new treatment strategies effected on those diseases. Neurodegeneration diseases, including Alzheimer''s disease (AD), Parkinson''s disease (PD) and Huntington''s disease (HD), were taken as a case study in this research. Reported susceptibility genes for AD, PD and HD were collected and human protein-protein interaction network (hPPIN) was used to identify biological pathways related to neurodegeneration. 81 KEGG pathways were found to be correlated with neurodegenerative disorders. 36 out of the 81 are human disease pathways, and the remaining ones are involved in miscellaneous human functional pathways. Cancers and infectious diseases are two major subclasses within the disease group. Apoptosis is one of the most significant functional pathways. Most of those pathways found here are actually consistent with prior knowledge of neurodegenerative diseases except two cell communication pathways: adherens and tight junctions. Gene expression analysis showed a high probability that the two pathways were related to neurodegenerative diseases. A combination of common susceptibility genes and hPPIN is an effective method to study shared pathways involved in a group of closely related disorders. Common modules, which might play a bridging role in linking neurodegenerative disorders and the enriched pathways, were identified by clustering analysis. The identified shared pathways and common modules can be expected to yield clues for effective target discovery efforts on neurodegeneration.  相似文献   
154.
An alkalitolerant, thermotolerant and Gram-stain negative bacterium, designated strain YIM 78007T, was isolated from an alkaline geothermal soil sample from Hehua hot spring, Tengchong, Yunnan province, south-west China. Cells of strain YIM 78007T were observed to be aerobic and short rod-shaped. The colonies were observed to be orange-red, convex and circular. 16S rRNA gene sequence-based phylogenetic analysis showed that strain YIM 78007T clustered with members of the genus Roseomonas (with similarities from 97.2 to 92.2 %). Optimal growth of strain YIM 78007 occurs at 40–50 °C and pH 8.0–10.0. The predominant ubiquinone was identified as Q-10 and the major fatty acids were identified as C18:1 ω7c and C16:0. The polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified aminolipids and one unknown phospholipid. The G + C content of the genomic DNA was determined to be 63 mol %. The levels of DNA–DNA hybridization relatedness between strain YIM 78007T and its closet neighbours (Roseomonas lacus JCM 13283T and Roseomonas terrae JCM 14592T) were well below the threshold required for the proposal of a novel species. The results of physiological and biochemical characteristics, the phylogenetic analysis, as well as low DNA–DNA hybridization values, allowed the phenotypic and genotypic differentiation of strain YIM 78007T from its closest phylogenetic neighbours. Therefore, strain YIM 78007T is considered to represent a novel species of the genus Roseomonas, for which the name Roseomonas alkaliterrae sp. nov. is proposed. The type strain is YIM 78007T (=BCRC 80644T = JCM 19656T).  相似文献   
155.
Glioblastoma multiforme (GBM) is notoriously resistant to radiation, and consequently, new radiosensitizers are urgently needed. MicroRNAs are a class of endogenous gene modulators with emerging roles in DNA repair. We found that overexpression of miR-26a can enhance radiosensitivity and reduce the DNA repair ability of U87 cells. However, knockdown miR-26a in U87 cells could act the converse manner. Mechanistically, this effect is mediated by direct targeting of miR-26a to the 3′UTR of ATM, which leads to reduced ATM levels and consequent inhibition of the homologous recombination repair pathway. These results suggest that miR-26a may act as a new radiosensitizer of GBM.  相似文献   
156.
157.
Much of the difficulty in elucidating the precise function of S100 protein family has been attributed to functional redundancy and compensation by its conserved family members. In this study, we showed that seven S100 family members were almost totally undetectable in HepG2.2.15 cells, while all of them were highly expressed in its parental HepG2 cells. Re-expression of S100 proteins in HepG2.2.15 cells can partially rescue their defects in cell protrusion and migration through the regulation of cytoskeletons and adhesions. Thus, HepG2.2.15 can serve as a useful model for studying cell protrusion and migration regulated by S100 proteins.  相似文献   
158.
We report bovine serum albumin (BSA)–boronic acid (BA) conjugates as lectin mimetics and their glyco-capturing capacity. The BSA–BA conjugates were synthesized by amidation of carboxylic acid groups in BSA with aminophenyl boronic acid in the presence of EDC, and were characterized by Alizarin Red S (ARS) assay and SDS–PAGE gel. The BSA–BA conjugates were immobilized onto maleimide-functionalized silica beads and their sugar capturing capacity and specificity were confirmed by ARS displacement assay. Further, surface plasmon resonance (SPR) analysis of the glyco-capturing activity of the BSA–BA conjugates was conducted by immobilizing BSA–BA onto SPR gold chip. Overall, we demonstrated a BSA–BA-based lectin mimetics for glyco-capturing applications. These lectin mimetics are expected to provide an important tool for glycomics and biosensor research and applications.  相似文献   
159.
蹄蝠科的核型进化:比较染色体涂色、G带和C带分析(英文)   总被引:1,自引:0,他引:1  
Mao XG  Wang JH  Su WT  Wang YX  Yang FT  Nie WH 《动物学研究》2010,31(5):453-460
与其姐妹科(菊头蝠科)相比,蹄蝠科的细胞遗传学研究较少。迄今为止,仅少数蹄蝠科几个物种有高分辨率的G带核型报道,且有关该科核型进化的大多数结论都是基于常规Giemsa染色研究而得。该研究利用三叶小蹄蝠的染色体特异探针,通过比较染色体涂色、G和C显带,建立了5种蹄蝠的染色体同源性图谱,并探讨了它们同源染色体间的G和C带异同。结果表明:罗伯逊易位、臂内倒位以及异染色质的扩增可能是蹄蝠科物种核型进化的主要机制。通过对这5种蹄蝠物种及其外群物种之间的同源染色体片段的比较分析,作者推测蹄蝠科的祖先核型并不像先前认为的全由端着丝粒染色体组成,而应该含有中着丝粒染色体。  相似文献   
160.
Biological methylation is a fundamental enzymatic reaction for a variety of substrates in multiple cellular processes. Mammalian N6amt1 was thought to be a homologue of bacterial N6-adenine DNA methyltransferases, but its substrate specificity and physiological importance remain elusive. Here, we demonstrate that N6amt1 functions as a protein methyltransferase for the translation termination factor eRF1 in mammalian cells both in vitro and in vivo. Mass spectrometry analysis indicated that about 70% of the endogenous eRF1 is methylated at the glutamine residue of the conserved GGQ motif. To address the physiological significance of eRF1 methylation, we disrupted the N6amt1 gene in the mouse. Loss of N6amt1 led to early embryonic lethality. The postimplantation development of mutant embryos was impaired, resulting in degeneration around embryonic day 6.5. This is in contrast to what occurs in Escherichia coli and Saccharomyces cerevisiae, which can survive without the N6amt1 homologues. Thus, N6amt1 is the first glutamine-specific protein methyltransferase characterized in vivo in mammals and methylation of eRF1 by N6amt1 might be essential for the viability of early embryos.Nucleic acids, proteins, carbohydrates, and lipids, as well as a body of small molecules, are subject to methylation in a wide variety of biological contexts (3). The majority of methylation reactions are catalyzed by S-adenosylmethionine (AdoMet)-dependent methyltransferases (MTases). These enzymes ubiquitously exist in species from all three domains of life.Methylation of DNA occurs on one of two bases: cytosine or adenine (19). In prokaryotes, adenine methylation is as widespread as cytosine methylation. In contrast, eukaryotic genomes are devoid of adenine methylation or this type of methylation is too rare to be detected (23, 26). Intriguingly, two putative N6-adenine DNA MTases, named N6amt1 and N6amt2, are encoded in the mouse and human genomes. In addition to the conserved AdoMet-binding signature motif GXGXG and other sequence elements, they possess the NPPY motif characteristic of the N6-adenine or N4-cytosine DNA MTases in bacteria (6, 14). N6amt1 was thus proposed as an AdoMet-dependent DNA MTase, although no evidence had been provided that N6amt1 could methylate DNA (23).No functional clue for N6amt1 existed until two groups independently identified Escherichia coli HemK, distantly related to N6amt1, as a protein MTase for polypeptide release factors RF1 and RF2 (8, 17). The HemK gene was initially discovered in a genetic screen for heme biosynthesis mutants (18), although subsequent studies revealed no direct involvement in heme metabolism. The presence of an NPPY motif, thought to be restricted to members of the adenine and cytosine amino methyltransferases, led to the suggestion that HemK could be an AdoMet-dependent DNA MTase (2). However, a series of genetic and biochemical experiments finally revealed that HemK methylates the side-chain amide group of a glutamine residue in the universally conserved tripeptide motif GGQ of the two release factors in E. coli (8, 17). Methylation of the release factors ensures efficient translation termination and release of newly synthesized peptide from the ribosome (16). Similarly, the yeast HemK homologue, YDR140w (Mtq2p), was confirmed to methylate the eukaryotic release factor eRF1 on a corresponding glutamine residue (9, 22). More recently, the human homologue N6amt1 (HemK2) was reported to methylate release factor 1 (eRF1) in vitro (5).We initially sought to characterize the function of N6amt1 as a potential DNA adenine MTase. Interestingly, the human N6amt1 gene is located on chromosome 21q21.3, a critical region for Down syndrome (1, 20). In this study, we report the identification of murine N6amt1 as a glutamine-specific MTase of eRF1 both in vitro and in vivo. Mammalian eRF1, the only mammalian release factor, is indeed methylated at the glutamine residue of the GGQ motif. Inactivation of the N6amt1 gene by targeted disruption led to embryonic lethality in the mouse. These data confirm that N6amt1 functions as a protein MTase in mammals and indicate that modulation of the eRF1 activity by N6amt1-mediated glutamine methylation might be essential for embryo viability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号