首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   27篇
  2023年   4篇
  2022年   11篇
  2021年   16篇
  2020年   11篇
  2019年   16篇
  2018年   18篇
  2017年   15篇
  2016年   13篇
  2015年   41篇
  2014年   24篇
  2013年   35篇
  2012年   56篇
  2011年   52篇
  2010年   28篇
  2009年   20篇
  2008年   16篇
  2007年   27篇
  2006年   16篇
  2005年   17篇
  2004年   8篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1978年   1篇
排序方式: 共有476条查询结果,搜索用时 507 毫秒
101.
LinA is the first enzyme of the microbial degradation pathway of a chlorinated insecticide, hexachlorocyclohexane (HCH), and mediates the dehydrochlorination of α-, γ-, and δ-HCH. Its two variants, LinA type 1 and LinA type 2, which differ at 10 out of 156 amino acid residues, have been described. Their activities for the metabolism of different HCH isomers differ considerably but overall are high for γ-HCH, moderate for α-HCH, low for δ-HCH, and lacking for β-HCH. Here, we describe the characterization of a new variant of this enzyme, LinA type 3, whose gene was identified from the metagenome of an HCH-contaminated soil sample. Its deduced primary structure in the region spanning amino acid residues 1 to 147 of the protein exhibits 17 and 12 differences from LinA type 1 and LinA type 2, respectively. In addition, the residues GIHFAPS, present at the region spanning residues 148 to 154 in both LinA type 1 and LinA type 2, are deleted in LinA type 3.The activity of LinA type 3 for the metabolism of δ-HCH is several orders of magnitude higher than that of LinA type 1 or LinA type 2 and can be useful for improvement of the metabolism of δ-HCH.  相似文献   
102.

The excess use of antibiotics has led to the evolution of multidrug-resistant pathogenic strains causing worldwide havoc. These multidrug-resistant strains require potent inhibitors. Pseudomonas aeruginosa is a lead cause of nosocomial infections and also feature in the critical priority list of the world health organization (WHO) for the development of new antibiotics against their antimicrobial resistance. Antimicrobial peptides (AMPs) found in almost every life form from microorganisms to humans are known to defend their hosts against various pathogens. Owing to the diversity of the human microbiome, in this study, we have identified the cell-penetrating AMPs from the human microbiome and studied their inhibitory activity against the outer membrane protein OprM of the MexAB–OprM, a constitutively expressed multidrug efflux pump of the Ps. aeruginosa. Screening of the AMPs from the human microbiome resulted in the identification of 147 cell-penetrating AMPs (CPAMPs). The virtual screening of these CPAMPs against the OprM protein showed significant inhibitory results with the top docked AMP showing binding affinity exceeding ?30 kcal/mol. The molecular dynamic simulation determined the interaction stabilities between the AMPs and the OprM at the binding site. Further, the residue interaction networks (RINs) are analyses to identify the inhibitory patterns. Later, these patterns were confirmed by MM-PBSA analysis suggesting that the AMPs are majorly stabilized by electrostatic interactions at the binding site. Thus, the high binding affinity and insights from the molecular interaction signify that the identified CPAMPs from the human microbiome can be further explored as inhibitory agents against multidrug-resistant Ps. aeruginosa.

  相似文献   
103.
Iron (Fe) is a micronutrient required for plant growth and development; however, most Fe forms in soil are not readily available to plants, resulting in low Fe contents in plants and, thereby, causing Fe deficiency in humans. Biofortification through plant-fungal co-cultivation might be a sustainable approach to increase crop Fe contents. Therefore, we aimed to examine the role of a Piriformospora indica Fe transporter on rice Fe uptake under low Fe conditions. A high-affinity Fe transporter (PiFTR) from P. indica was identified and functionally characterized. PiFTR fulfilled all criteria expected of a functional Fe transporter under Fe-limited conditions. Additionally, PiFTR expression was induced when P. indica was grown under low Fe conditions, and PiFTR complemented a yeast mutant lacking Fe transport. A knockdown (KD) P. indica strain was created via RNA interference to understand the physiological role of PiFTR. We observed that the KD-PiFTR-P. indica strain transported a significantly lower amount of Fe to colonized rice (Oryza sativa) than the wild type (WT) P. indica. WT P. indica-colonized rice plants were healthier and performed significantly better than KD-PiFTR-P. indica-colonized rice plants. Our study offers potential avenues for an agronomically sound amelioration of plant growth in low Fe environments.  相似文献   
104.
Skin, the largest organ of the body serves as a potential route of drug delivery for local and systemic effects. However, the outermost layer of skin, the stratum corneum (SC) acts as a tough barrier that prevents penetration of hydrophilic and high molecular weight drugs. Ethosomes are a novel phospholipid vesicular carrier containing high ethanol concentrations and offer improved skin permeability and efficient bioavailability due to their structure and composition. This article gives a review of ethosomes including their compositions, types, mechanism of drug delivery, stability, and safety behaviour. This article also provides a detailed overview of drug delivery applications of ethosomes in various diseases.  相似文献   
105.
One of the most essential questions of biology is to understand how different species have evolved. Hybrid incompatibility, a phenomenon in which hybrids show reduced fitness in comparison with their parents, can result in reproductive isolation and speciation. Therefore, studying hybrid incompatibility provides an entry point in understanding speciation. Hybrid incompatibilities are known throughout taxa, and the underlying mechanisms have mystified scientists since the theory of evolution by means of natural selection was introduced. In plants, it is only in recent years that the high‐throughput genetic and molecular tools have become available for the Arabidopsis genus, thus helping to shed light on the different genes and molecular and evolutionary mechanisms that underlie hybrid incompatibilities. In this review, we highlight the current knowledge of diverse mechanisms that are known to contribute to hybrid incompatibility.  相似文献   
106.
Immobilized Candida antarctica lipase and Thermomyces lanuginosus lipase catalyze the deacylation of precursors of LNA analogs, 4'-C-acyloxymethyl-2',3',5'-tri-O-acyl-beta-L-threo-pentofuranosylthymine and 4-C-acyloxymethyl-3,5-di-O-acyl-1,2-O-(1-methylethylidene)-beta-L-threo-pentofuranose, respectively in a highly selective and efficient manner.  相似文献   
107.
Chemical genetics has arisen as a tool for the discovery of pathways and proteins in mammalian systems. This approach, comprising small-molecule screening combined with biochemical and genomic target identification methods, enables one to assess which proteins are involved in regulating a particular phenotype. Applied to cell death, this strategy can reveal novel targets and pathways regulating the demise of mammalian cells. Numerous diseases have been linked to the loss of regulation of cell death. Defining the mechanisms governing cell death in these diseases might lead to the discovery of therapeutic agents and targets and provide a richer understanding of the mortality of living systems. Recent advances include the discovery of novel small molecules regulating cell death pathways -- necrostatin and erastin -- as well as the elucidation of the mechanism of death induced in cancer cells by the cytotoxic agent Apratoxin A.  相似文献   
108.
Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3′ side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4Cdt2. Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4Cdt2 for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER.  相似文献   
109.
Xanthones and their thio-derivatives are a class of pleiotropic compounds with various reported pharmacological and biological activities. Although these activities are mainly determined in laboratory conditions, the class itself has a great potential to be utilized as promising chemical scaffold for the synthesis of new drug candidates. One of the main obstacles in utilization of these compounds was related to the difficulties in their chemical synthesis. Most of the known methods require two steps, and are limited to specific reagents not applicable to a large number of starting materials. In this paper a new and improved method for chemical synthesis of xanthones is presented. By applying a new procedure, we have successfully obtained these compounds with the desired regioselectivity in a shorter reaction time (50s) and with better yield (>80%). Finally, the preliminary in vitro screenings on different bacterial species and cytotoxicity assessment, as well as in silico activity evaluation were performed. The obtained results confirm potential pharmacological use of this class of molecules.  相似文献   
110.
The cereal cyst nematode, Heterodera avenae (Wollenweber, 1924) is one of the most important plant parasitic nematodes of cereals. It is an obligate sedentary endo parasite causing considerable crop losses in wheat, barley and oats worldwide. FMRFamide-like peptides (FLPs) play critical role as neurotransmitters or neuromodulators in the nervous system and proposed as one of the important targets for the plant parasitic nematode management. Therefore, for the first time we have cloned and characterized two neuropeptide genes (flp-12 and flp-16) from the cDNA library of feeding female of H. avenae. Sequence analysis of FLPs revealed that both the neuropeptides are closely related with the parasitic as well as free-living nematodes. The flp-12 contains putative 22 residue long signal peptide at N-terminal suggesting its association with extra-cellular functions, while flp-16 does not contain signal peptide. Besides this, we have found highly conserved motif KFEFIRF in flp-12 and RFGK motif in flp-16. These two flp genes could be interesting and potential targets for functional validation to explore their utility for designing management strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号