首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   903篇
  免费   49篇
  2023年   7篇
  2022年   14篇
  2021年   18篇
  2020年   17篇
  2019年   17篇
  2018年   22篇
  2017年   24篇
  2016年   28篇
  2015年   50篇
  2014年   42篇
  2013年   64篇
  2012年   90篇
  2011年   76篇
  2010年   39篇
  2009年   35篇
  2008年   38篇
  2007年   37篇
  2006年   30篇
  2005年   22篇
  2004年   17篇
  2003年   17篇
  2002年   22篇
  2001年   19篇
  2000年   7篇
  1999年   11篇
  1998年   5篇
  1996年   5篇
  1993年   6篇
  1992年   7篇
  1991年   9篇
  1990年   6篇
  1989年   8篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   6篇
  1982年   10篇
  1981年   5篇
  1980年   6篇
  1979年   11篇
  1978年   5篇
  1977年   8篇
  1976年   7篇
  1975年   5篇
  1974年   8篇
  1973年   5篇
  1972年   12篇
  1971年   7篇
  1969年   6篇
排序方式: 共有952条查询结果,搜索用时 171 毫秒
191.
Rates of weight loss and release of nutrients during different phases of decomposition in young water hyacinth leaves were determined under laboratory conditions. The leaves decomposed solely by physical leaching during the initial 4-day phase and later by microbial processes. The largest part of weight loss and nutrient release by physical leaching took place within the first 4 h of incubation and thereafter the decomposition rate declined. Microbial processes decayed leaves at a significantly higher rate than that by physical leaching. The overall decay rate constants were related inversely and the release of nutrients directly to the levels of leaf additions in the lake water. The dissolved inorganic and organic nutrients were released chiefly by abiotic processes during the initial as well as later phases of decay. The release was significantly higher during the initial phase in comparison with that during the later phase. Microbes utilized only a small amount of nutrients that were released during decomposition of water hyacinth leaves. The % release of various elements from the decaying leaves was in the order of K > P > C > Na > N.  相似文献   
192.
Changes in the activities of enzymes involved in the detoxification of reactive oxygen species in wheat seedlings ( Triticum aestivum L.) in response to variations in the light environment were studied. Activities of ascorbate peroxidase, superoxide dismutase, monodehydroascorbate reductase, dehydroascorbate reductase, glutalhione reductase and catalase were much lower in seedlings grown under low-light conditions than in those grown under high-light conditions. Activities of all these enzymes significantly increased within 24 h of transfer of the low-light-grown seedlings to the high-light regime. The results suggest that the increase in enzyme activities was an adaptive response of the plants to higher amounts of active oxygen species generated at higher light intensities. An accumulation of glutathione was also observed, which could also be a part of the defense strategy to meet the increased generation of active oxygen species upon transfer of low-light-grown plants to high-light conditions.  相似文献   
193.
194.

Objectives

Granulocyte macrophage colony stimulating factor (GMCSF), an important therapeutic cytokine, was immobilized onto silica nanoparticles. Maintenance of structural integrity and biological performance in immobilized cytokine was assessed to augment its applicability in possible biomedical implications.

Results

Following its cloning and expression in E. coli, the recombinant human GMCSF (hGMCSF) was purified as a GST-tagged protein corresponding to a 42 kDa band on SDS-PAGE. The purified cytokine was immobilized onto biocompatible silica nanoparticles (~129.4 nm) by adsorption and the binding was confirmed by dynamic light scattering and infrared spectroscopy. Maximum binding of hGMCSF was at 6.4 µg mg?1 silica nanoparticles. Efficient release of the cytokine from the nanoparticles with its structural integrity intact was deduced from circular dichroism spectroscopy. hGMCSF-immobilized silica nanoparticles efficiently increased the proliferation of RAW 264.7 macrophage cells with 50 % increase in proliferation at 600 ng hGMCSF µg?1 silica nanoparticles.

Conclusions

Silica nanoparticles successfully immobilized hGMCSF maintaining its structural integrity. The release of the immobilized cytokine from silica nanoparticles resulted in the increased proliferation of macrophages indicating the potential of the system in future applications.
  相似文献   
195.
Recent studies have shown that nephrin plays a vital role in angiotensin II (Ang II)–induced podocyte injury and thus contributes to the onset of proteinuria and the progression of renal diseases, but its specific mechanism remains unclear. c-Abl is an SH2/SH3 domain–containing nonreceptor tyrosine kinase that is involved in cell survival and regulation of the cytoskeleton. Phosphorylated nephrin is able to interact with molecules containing SH2/SH3 domains, suggesting that c-Abl may be a downstream molecule of nephrin signaling. Here we report that Ang II–infused rats developed proteinuria and podocyte damage accompanied by nephrin dephosphorylation and minimal interaction between nephrin and c-Abl. In vitro, Ang II induced podocyte injury and nephrin and Akt dephosphorylation, which occurred in tandem with minimal interaction between nephrin and c-Abl. Moreover, Ang II promoted c-Abl phosphorylation and interaction between c-Abl and SH2 domain–containing 5′-inositol phosphatase 2 (SHIP2). c-Abl small interfering RNA (siRNA) and STI571 (c-Abl inhibitor) provided protection against Ang II–induced podocyte injury, suppressed the Ang II-induced c-Abl–SHIP2 interaction and SHIP2 phosphorylation, and maintained a stable level of nephrin phosphorylation. These results indicate that c-Abl is a molecular chaperone of nephrin signaling and the SHIP2-Akt pathway and that the released c-Abl contributes to Ang II–induced podocyte injury.  相似文献   
196.
In Down syndrome (DS) or trisomy of chromosome 21, the β-amyloid (Aβ) peptide product of the amyloid precursor protein (APP) is present in excess. Evidence points to increased APP gene dose and Aβ as playing a critical role in cognitive difficulties experienced by people with DS. Particularly, Aβ is linked to the late-life emergence of dementia as associated with neuropathological markers of Alzheimer’s disease (AD). At present, no treatment targets Aβ–related pathogenesis in people with DS. Herein we used a vaccine containing the Aβ 1–15 peptide embedded into liposomes together with the adjuvant monophosphoryl lipid A (MPLA). Ts65Dn mice, a model of DS, were immunized with the anti-Aβ vaccine at 5 months of age and were examined for cognitive measures at 8 months of age. The status of basal forebrain cholinergic neurons and brain levels of APP and its proteolytic products were measured. Immunization of Ts65Dn mice resulted in robust anti-Aβ IgG titers, demonstrating the ability of the vaccine to break self-tolerance. The vaccine-induced antibodies reacted with Aβ without detectable binding to either APP or its C-terminal fragments. Vaccination of Ts65Dn mice resulted in a modest, but non-significant reduction in brain Aβ levels relative to vehicle-treated Ts65Dn mice, resulting in similar levels of Aβ as diploid (2N) mice. Importantly, vaccinated Ts65Dn mice showed resolution of memory deficits in the novel object recognition and contextual fear conditioning tests, as well as reduction of cholinergic neuron atrophy. No treatment adverse effects were observed; vaccine did not result in inflammation, cellular infiltration, or hemorrhage. These data are the first to show that an anti-Aβ immunotherapeutic approach may act to target Aβ-related pathology in a mouse model of DS.  相似文献   
197.
BackgroundReports including our own describe that intravascular hemolysis increases the risk of thrombosis in hemolytic disorders. Our recent study shows that plasma Hb concentrations correlate directly with platelet activation in patients with paroxysmal nocturnal hemoglobinuria (PNH). The binding of Hb to glycoprotein1bα (GP1bα) increases platelet activation. A peptide AA1-50, designed from N-terminal amino acid sequence of GP1bα significantly inhibits the Hb binding to GP1bα as well as Hb-induced platelet activation. This study further examined if the Hb-mediated platelet activation plays any significant role in thrombus formation on subendothelium matrix under physiological flow shear stresses and the inhibition of Hb-platelet interaction can abrogate the above effects of Hb.

Methods and Results

Study performed thrombus formation assay in vitro by perfusing whole blood over immobilized VWF or collagen type I in presence of Hb under shear stresses simulating arterial or venous flow. The Hb concentrations ranging from 5 to 10 μM, commonly observed level in plasma of the hemolytic patients including PNH, dose-dependently increased thrombus formation on immobilized VWF under higher shear stress of 25 dyne/cm2, but not at 5 dyne/cm2. The above Hb concentrations also increased thrombus formation on immobilized collagen under both shear stresses of 5 and 25 dyne/cm2. The peptide AA1-50 abrogated invariably the above effects of Hb on thrombus formation.

Conclusions and Significance

This study therefore indicates that the Hb-induced platelet activation plays a crucial role in thrombus formation on immobilized VWF or collagen under physiological flow shear stresses. Thus suggesting a probable role of this mechanism in facilitating thrombosis under hemolytic conditions.  相似文献   
198.
199.
200.
Human bone marrow contains natural regulatory cells capable of suppressing the in vitro primary IgM response of normal tonsillar cells. The suppression is mediated by non-T cells possessing Fc receptors, OKM1, SSEA-1, and HNK-1 antigens on their surface. The suppression was abrogated by treatment of bone marrow cells (BMC) with anti-HNK-1 or anti-SSEA-1 antisera and complement. Furthermore, BMC depleted of HNK-1+ cells could respond in a primary in vitro antibody response when provided with accessory T cells and macrophages from tonsillar cells. Our findings support the idea that HNK-1+ and HNK-1- BMC populations act antagonistically in the regulation of antibody synthesis. Further, the finding of HNK-1+, SSEA-1+, and OKM1+ suppressor cells in human bone marrow may represent a precursor phenotype of mature natural killer cells with potent immunoregulatory activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号