首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   46篇
  2023年   5篇
  2022年   10篇
  2021年   18篇
  2020年   12篇
  2019年   14篇
  2018年   16篇
  2017年   12篇
  2016年   15篇
  2015年   38篇
  2014年   25篇
  2013年   37篇
  2012年   54篇
  2011年   51篇
  2010年   27篇
  2009年   21篇
  2008年   16篇
  2007年   30篇
  2006年   19篇
  2005年   20篇
  2004年   11篇
  2003年   7篇
  2002年   8篇
  2001年   8篇
  2000年   8篇
  1999年   4篇
  1995年   4篇
  1992年   3篇
  1991年   6篇
  1990年   8篇
  1989年   5篇
  1988年   7篇
  1987年   6篇
  1986年   7篇
  1985年   8篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1979年   6篇
  1978年   4篇
  1977年   9篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   3篇
  1972年   6篇
  1971年   5篇
  1970年   3篇
  1969年   2篇
  1968年   3篇
  1967年   3篇
排序方式: 共有610条查询结果,搜索用时 15 毫秒
31.

RNA interference (RNAi)-based host-induced gene silencing (HIGS) is emerging as a novel, efficient and target-specific tool to combat phytonematode infection in crop plants. Mi-msp-1, an effector gene expressed in the subventral pharyngeal gland cells of Meloidogyne incognita plays an important role in the parasitic process. Mi-msp-1 effector is conserved in few of the species of root-knot nematodes (RKNs) and does not share considerable homology with the other phytonematodes, thereby making it a suitable target for HIGS with minimal off-target effects. Six putative eggplant transformants harbouring a single copy RNAi transgene of Mi-msp-1 was generated. Stable expression of the transgene was detected in T1, T2 and T3 transgenic lines for which a detrimental effect on RKN penetration, development and reproduction was documented upon challenge infection with nematode juveniles. The post-parasitic nematode stages extracted from the transgenic plants showed long-term RNAi effect in terms of targeted downregulation of Mi-msp-1. These findings suggest that HIGS of Mi-msp-1 enhances nematode resistance in eggplant and protect the plant against RKN parasitism at very early stage.

  相似文献   
32.
Seminal amyloids are well known for their role in enhancing HIV infection. Among all the amyloidogenic peptides identified in human semen, PAP248‐286 was found to be the most active and was termed as semen‐derived enhancer of viral infection (SEVI). Although amyloidogenic nature of the peptide is mainly linked with enhancement of the viral infection, the most active physiological conformation of the aggregated peptide remains inconclusive. Lipids are known to modulate aggregation pathway of a variety of proteins and peptides and constitute one of the most abundant biomolecules in human semen. PAP248‐286 significantly differs from the other known amyloidogenic peptides, including Aβ and IAPP, in terms of critical concentration, surface charge, fibril morphology, and structural transition during aggregation. Hence, in the present study, we aimed to assess the effect of a lipid, 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC), on PAP248‐286 aggregation and the consequent conformational outcomes. Our initial observation suggested that the presence of the lipid considerably influenced the aggregation of PAP248‐286. Further, ZDOCK and MD simulation studies of peptide multimerization have suggested that the hydrophobic residues at C‐terminus are crucial for PAP248‐286 aggregation and are anticipated to be major DOPC‐interacting partners. Therefore, we further assessed the aggregation behaviour of C‐terminal (PAP273‐286) fragment of PAP248‐286 and observed that DOPC possesses the ability to interfere with the aggregation behaviour of both the peptides used in the current study. Mechanistically, we propose that the presence of DOPC causes considerable inhibition of the peptide aggregation by interfering with the peptide's disordered state to β‐sheet transition.  相似文献   
33.
34.
DNA-enzymes (Dzs) usually cleave short synthetic target RNAs very efficiently, but this activity diminishes significantly when tested on full-length RNAs, primarily because of the rigid secondary structures near the target sequence. We identified two Dzs, one each for 81-17 and 10-23 Dz, which cleaved the human immunodeficiency virus type 1 (HIV-1) Gag RNA poorly. We sought to use short oligodeoxynucleotides (ODNs) with the hope that it will facilitate Dz-mediated cleavage. The efficiencies of several ODNs were analyzed for their ability to augment the 8-17 Dz-mediated cleavage. We observed that ODNs that hybridized close to 5' and 3' ends of the target sequence were able to enhance significantly 8-17 Dz-mediated cleavage activity in a dose-dependent manner. The same was true for 10-23 Dz with ODNs that hybridized close to the target site. Thus, it was possible to enhance significantly the cleavage activity of poorly cleaving HIV-1 Gag-specific Dzs by using sequence-specific ODNs. This combination of antisense and catalytic Dz will, in principle, result in more effective gene suppression that could be exploited for therapeutic purposes.  相似文献   
35.
Cell differentiation in multicellular organisms has the obvious function during development of creating new cell types. However, in long-lived organisms with extensive cell turnover, cell differentiation often continues after new cell types are no longer needed or produced. Here, we address the question of why this is true. It is believed that multicellular organisms could not have arisen or been evolutionarily stable without possessing mechanisms to suppress somatic selection among cells within organisms, which would otherwise disrupt organismal integrity. Here, we propose that one such mechanism is a specific pattern of ongoing cell differentiation commonly found in metazoans with cell turnover, which we call “serial differentiation.” This pattern involves a sequence of differentiation stages, starting with self-renewing somatic stem cells and proceeding through several (non–self-renewing) transient amplifying cell stages before ending with terminally differentiated cells. To test the hypothesis that serial differentiation can suppress somatic evolution, we used an agent-based computer simulation of cell population dynamics and evolution within tissues. The results indicate that, relative to other, simpler patterns, tissues organized into serial differentiation experience lower rates of detrimental cell-level evolution. Self-renewing cell populations are susceptible to somatic evolution, while those that are not self-renewing are not. We find that a mutation disrupting differentiation can create a new self-renewing cell population that is vulnerable to somatic evolution. These results are relevant not only to understanding the evolutionary origins of multicellularity, but also the causes of pathologies such as cancer and senescence in extant metazoans, including humans.  相似文献   
36.
Inositol hexaphosphate (IP6) is a natural constituent found in almost all cereals and legumes. It is known to cause numerous antiangiogenic manifestations. Notwithstanding its great potential, it is underutilized due to the chelation and rapid excretion from the body. Jacalin is another natural constituent obtained from seeds of jackfruit and can target disaccharides overexpressed in tumor cells. The current study was in-quested to develop and evaluate a surface-modified gold nanoparticulate system containing IP6 and jacalin which may maximize the apoptotic effect of IP6 against HCT-15 cell lines. IP6 loaded jacalin-pectin-gold nanoparticles (IJP-GNPs) were developed through reduction followed by incubation method. The developed formulation was tested for various in vitro and in silico studies to investigate its potential. HCT-15 cells when exposed to IJP-GNP resulted in significant apoptotic effects in dose as well as time-dependent manner, as measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, micronucleus, and reactive oxygen species assay. IJP-GNP displayed cell cycle arrest at the G0/G1 phase. To further explore the mechanism of chemoprevention, in silico studies were performed. The docking results revealed that the interactive behavior of IP6, P-GNP, and jacalin could target and inhibit the tumor formation activity, supported by in vitro studies. Taken together, all the findings suggested that IP6 loaded nanoparticles may increase the hope of future drug delivery strategy for targeting colon cancer.  相似文献   
37.
Gingivitis is the most common form of oral disease especially among patients undergoing fixed orthodontic treatment. Green tea, which is extensively used in Asian countries, can help to improve the overall gingival health, which can be assessed by using the gingival indices. Evaluation of the effectiveness of green tea on the gingival health of patients undergoing Orthodontic treatment is of interest. 40 otherwise healthy patients undergoing fixed orthodontic treatment were randomly divided in two groups namely (1) study group and (2) control group. Gingival indices were scored for all the patients. Study group was given mouth rinse with green tea extract and control group was given placebo with no green tea extract. Gingival indices were measured for all the patients after 21 days. Mann Whitney U test and Wilcoxon test was used for statistical analysis. The gingival indices scoring in which the values before and after the use of mouthwash were compared. The p value was found to be statistically significant (p<0.05) in study group. But in control group statistical significant could not be reached.  相似文献   
38.
Substance P binding sites in the nucleus tractus solitarius were visualized with receptor autoradiography using Bolton-Hunter [125I]substance P. Substance P binding sites were found to have distinct patterns within the cat nucleus tractus solitarius. The majority of substance P binding sites were present in the medial, intermediate and the peripheral rim of the parvocellular subdivisions. Lower amounts of substance P binding sites were present in the commissural, ventrolateral, interstitial and dorsolateral subdivisions. No substance P binding sites were present in the central region of the parvocellular subdivision or the solitary tract. The localization of substance P binding sites in the nucleus tractus solitarius is very similar to the patterns of substance P immunoreactive fibers previously described for this region. Results of this study add further support for a functional role of substance P in synaptic circuits of the nucleus tractus solitarius.  相似文献   
39.
BackgroundOur aim was to estimate the overall and age-specific incidence of lab-confirmed dengue fever using ELISA based assays among children 6 months to 15 years in Delhi.MethodsWe enrolled a cohort of 984 children aged 6 months to <14 years in South Delhi and followed-up weekly for fever for 24 months or till 15 completed years of child-age. Households of the enrolled children were geo-tagged. NS1, IgM and IgG assays were conducted using ELISA method to confirm dengue fever in children with ≥3 consecutive days of fever. Molecular typing was done in a subset of NS1 positive cases to identify the circulating serotypes.Principal findingsWe had a total of 1953 person-years (PY) of follow up. Overall, there were 4208 episodes of fever with peaks during June to November. The overall incidence (95%CI) of fever was 215/100 PY (209 to 222). A total of 74/1250 3-day fever episodes were positive for acute dengue fever (NS1 and/or IgM positive). The overall incidence (95%CI) of acute dengue fever was 37.9 (29.8 to 47.6) per 1000 PY; highest among children aged 5 to 10 years (50.4 per 1000 PY, 95% CI 36.5 to 67.8). Spatial autocorrelation analysis suggested a clustering pattern for the dengue fever cases (Moran’s Index 0.35, z-score 1.8, p = 0.06). Dengue PCR was positive in 16 of the 24 specimens tested; DEN 3 was the predominant serotype identified in 15/24 specimens.ConclusionsWe found a high incidence of dengue fever among under 15-year children with clustering of cases in the community. DEN 3 was the most commonly circulating strain encountered. The findings underscore the need for development of affordable pre-vaccination screening strategy as well as newer dengue vaccines for young children while continuing efforts in vector control.  相似文献   
40.
Transforming growth factor-beta1 (TGF-beta1) belongs to a family of multifunctional cytokines that regulate a variety of biological processes, including cell differentiation, proliferation, and apoptosis. The effects of TGF-beta1 are cell context and cell cycle specific and may be signaled through several pathways. We examined the effect of TGF-beta1 on apoptosis of primary human central airway epithelial cells and cell lines. TGF-beta1 protected human airway epithelial cells from apoptosis induced by either activation of the Fas death receptor (CD95) or by corticosteroids. This protective effect was blocked by inhibition of the Smad pathway via overexpression of inhibitory Smad7. The protective effect is associated with an increase in the cyclin-dependent kinase inhibitor p21 and was blocked by the overexpression of key gatekeeper cyclins for the G1/S interface, cyclins D1 and E. Blockade of the Smad pathway by overexpression of the inhibitory Smad7 permitted demonstration of a TGF-beta-mediated proapoptotic pathway. This proapoptotic effect was blocked by inhibition of the p38 MAPK kinase signaling with the inhibitor SB-203580 and was associated with an increase in p38 activity as measured by a kinase assay. Here we demonstrate dual signaling pathways involving TGF-beta1, an antiapoptotic pathway mediated by the Smad pathway involving p21, and an apoptosis-permissive pathway mediated in part by p38 MAPK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号