首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   46篇
  2023年   5篇
  2022年   10篇
  2021年   18篇
  2020年   12篇
  2019年   14篇
  2018年   16篇
  2017年   12篇
  2016年   15篇
  2015年   38篇
  2014年   25篇
  2013年   37篇
  2012年   54篇
  2011年   51篇
  2010年   27篇
  2009年   21篇
  2008年   16篇
  2007年   30篇
  2006年   19篇
  2005年   20篇
  2004年   11篇
  2003年   7篇
  2002年   8篇
  2001年   8篇
  2000年   8篇
  1999年   4篇
  1995年   4篇
  1992年   3篇
  1991年   6篇
  1990年   8篇
  1989年   5篇
  1988年   7篇
  1987年   6篇
  1986年   7篇
  1985年   8篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1979年   6篇
  1978年   4篇
  1977年   9篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   3篇
  1972年   6篇
  1971年   5篇
  1970年   3篇
  1969年   2篇
  1968年   3篇
  1967年   3篇
排序方式: 共有610条查询结果,搜索用时 31 毫秒
141.
Skin, the largest organ of the body serves as a potential route of drug delivery for local and systemic effects. However, the outermost layer of skin, the stratum corneum (SC) acts as a tough barrier that prevents penetration of hydrophilic and high molecular weight drugs. Ethosomes are a novel phospholipid vesicular carrier containing high ethanol concentrations and offer improved skin permeability and efficient bioavailability due to their structure and composition. This article gives a review of ethosomes including their compositions, types, mechanism of drug delivery, stability, and safety behaviour. This article also provides a detailed overview of drug delivery applications of ethosomes in various diseases.  相似文献   
142.
143.
Immobilized Candida antarctica lipase and Thermomyces lanuginosus lipase catalyze the deacylation of precursors of LNA analogs, 4'-C-acyloxymethyl-2',3',5'-tri-O-acyl-beta-L-threo-pentofuranosylthymine and 4-C-acyloxymethyl-3,5-di-O-acyl-1,2-O-(1-methylethylidene)-beta-L-threo-pentofuranose, respectively in a highly selective and efficient manner.  相似文献   
144.
Chemical genetics has arisen as a tool for the discovery of pathways and proteins in mammalian systems. This approach, comprising small-molecule screening combined with biochemical and genomic target identification methods, enables one to assess which proteins are involved in regulating a particular phenotype. Applied to cell death, this strategy can reveal novel targets and pathways regulating the demise of mammalian cells. Numerous diseases have been linked to the loss of regulation of cell death. Defining the mechanisms governing cell death in these diseases might lead to the discovery of therapeutic agents and targets and provide a richer understanding of the mortality of living systems. Recent advances include the discovery of novel small molecules regulating cell death pathways -- necrostatin and erastin -- as well as the elucidation of the mechanism of death induced in cancer cells by the cytotoxic agent Apratoxin A.  相似文献   
145.
Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3′ side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4Cdt2. Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4Cdt2 for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER.  相似文献   
146.
Xanthones and their thio-derivatives are a class of pleiotropic compounds with various reported pharmacological and biological activities. Although these activities are mainly determined in laboratory conditions, the class itself has a great potential to be utilized as promising chemical scaffold for the synthesis of new drug candidates. One of the main obstacles in utilization of these compounds was related to the difficulties in their chemical synthesis. Most of the known methods require two steps, and are limited to specific reagents not applicable to a large number of starting materials. In this paper a new and improved method for chemical synthesis of xanthones is presented. By applying a new procedure, we have successfully obtained these compounds with the desired regioselectivity in a shorter reaction time (50s) and with better yield (>80%). Finally, the preliminary in vitro screenings on different bacterial species and cytotoxicity assessment, as well as in silico activity evaluation were performed. The obtained results confirm potential pharmacological use of this class of molecules.  相似文献   
147.
The cereal cyst nematode, Heterodera avenae (Wollenweber, 1924) is one of the most important plant parasitic nematodes of cereals. It is an obligate sedentary endo parasite causing considerable crop losses in wheat, barley and oats worldwide. FMRFamide-like peptides (FLPs) play critical role as neurotransmitters or neuromodulators in the nervous system and proposed as one of the important targets for the plant parasitic nematode management. Therefore, for the first time we have cloned and characterized two neuropeptide genes (flp-12 and flp-16) from the cDNA library of feeding female of H. avenae. Sequence analysis of FLPs revealed that both the neuropeptides are closely related with the parasitic as well as free-living nematodes. The flp-12 contains putative 22 residue long signal peptide at N-terminal suggesting its association with extra-cellular functions, while flp-16 does not contain signal peptide. Besides this, we have found highly conserved motif KFEFIRF in flp-12 and RFGK motif in flp-16. These two flp genes could be interesting and potential targets for functional validation to explore their utility for designing management strategies.  相似文献   
148.
Polyphenols have been shown to induce apoptosis in a variety of tumor cells including leukemia both in vitro and in vivo. However, their action on normal human peripheral blood mononuclear cells (PBMCs) during oxidative stress remains to be explored. In this study, we have evaluated the anti-apoptotic and radical scavenging activities of dietary phenolics, namely caffeic acid (CA), ellagic acid (EA) and ferulic acid (FA). H2O2-induced apoptosis in normal human PBMCs was assayed by phosphotidylserine externalization, nucleosomal damage and DNA fragmentation. Incubation of PBMCs with 5 mM H2O2 led to increased Annexin-V binding to externalized phosphatidyl serine (PS), an event of pre-apoptotic stage of the cell. Peripheral blood mononuclear cells pretreated with phenolics could resist H2O2-induced apoptotic damage. Caffeic acid (60 and 120 microM) and EA (100 and 200 microM) caused no change in externalization of PS, whereas FA (100 and 200 microM) increased externalization of PS in PBMCs treated with H2O2. The effects of phenolics were abolished to a large extent by culturing the PBMCs for 24 h after washing the phenolics from the medium. Inhibitory activities of these phenolics on lipid peroxidation were in the order of EA相似文献   
149.
A study was undertaken to explore the content and composition of volatile oil from decaying leaves of lemon-scented eucalypt (Eucalyptus citriodora Hook.) not analyzed earlier. GC and GC-MS analysis of the oil (yield 0.6%) revealed the monoterpenoid nature with citronellal (52.2%), citronellol (12.3%) and isoisopulegol (11.9%) as the major constituents. Overall, 17 components were identified that accounted for over 94% of the decaying leaf oil. Surprisingly, the decaying leaf oil contained nearly 1.8% of trans-rose oxide, which is generally absent in eucalypt essential oil. Decaying leaf oil and its major 2 components (citronellal and citronellol) inhibited the germination and root elongation of two weeds--Cassia occidentalis (broad-leaved) and Echinochloa crus-galli (grassy weed). Based on the dose-response studies, I50 values were determined for decaying leaf oil and the effect was more on germination only of broad-leaved weed (C. occidentalis), whereas that of citronellal and citronellol were on germination as well as root length of E. crus-galli (grassy weed). Based on I50 values it was observed that citronellal was more phytotoxic and germination inhibiting in nature, whereas citronellol was a more potent root inhibitor, thereby indicating a possible different mode of action. The study concludes that decaying leaf oil hold a good commercial value for exploitation as weed management agent.  相似文献   
150.
In view of the importance of Candida Drug Resistance Protein (Cdr1p) of pathogenic Candida albicans in azole resistance, we have characterized its ability to efflux variety of substrates by subjecting its entire transmembrane segment (TMS) 5 to site directed mutagenesis. All the mutant variants of putative 21 amino acids of TMS 5 and native CaCdr1p were over expressed as a GFP-tagged protein in a heterologous host Saccharomyces cerevisiae. Based on the drug susceptibility pattern, the mutant variants could be grouped into two categories. The variants belonging to first category were susceptible to all the tested drugs, as compared to those belonging to second category which exhibited resistance to selective drugs. The mutant variants of both the categories were analyzed for their ATP catalysis and drug efflux properties. Irrespective of the categories, most of the mutant variants of TMS 5 showed an uncoupling between ATP hydrolysis and drug efflux. The mutant variants such as M667A, F673A, I675A and P678A were an exception since they reflected a sharp reduction in both Km and Vmax values of ATPase activity when compared with WT CaCdr1p-GFP. Based on the competition experiments, we could identify TMS 5 residues which are specific to interact with select drugs. TMS 5 residues of CaCdr1p thus not only impart substrate specificity but also selectively act as a communication link between ATP hydrolysis and drug transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号