首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8019篇
  免费   1099篇
  2023年   43篇
  2022年   102篇
  2021年   179篇
  2020年   110篇
  2019年   149篇
  2018年   160篇
  2017年   130篇
  2016年   250篇
  2015年   404篇
  2014年   451篇
  2013年   497篇
  2012年   687篇
  2011年   663篇
  2010年   447篇
  2009年   378篇
  2008年   475篇
  2007年   529篇
  2006年   535篇
  2005年   541篇
  2004年   489篇
  2003年   393篇
  2002年   429篇
  2001年   70篇
  2000年   44篇
  1999年   81篇
  1998年   84篇
  1997年   62篇
  1996年   51篇
  1995年   48篇
  1994年   49篇
  1993年   48篇
  1992年   56篇
  1991年   31篇
  1990年   35篇
  1989年   28篇
  1988年   24篇
  1987年   36篇
  1986年   30篇
  1985年   24篇
  1984年   25篇
  1983年   26篇
  1982年   23篇
  1981年   23篇
  1980年   27篇
  1979年   25篇
  1978年   19篇
  1977年   13篇
  1976年   14篇
  1974年   12篇
  1973年   8篇
排序方式: 共有9118条查询结果,搜索用时 31 毫秒
181.
Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and β-bulge of cytP450 and residues at the end of helix α4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes.  相似文献   
182.
The yeast protein Zim17 belongs to a unique class of co-chaperones that maintain the solubility of Hsp70 proteins in mitochondria and plastids of eukaryotic cells. However, little is known about the functional cooperation between Zim17 and mitochondrial Hsp70 proteins in vivo. To analyze the effects of a loss of Zim17 function in the authentic environment, we introduced novel conditional mutations within the ZIM17 gene of the model organism Saccharomyces cerevisiae that allowed a recovery of temperature-sensitive but respiratory competent zim17 mutant cells. On fermentable growth medium, the mutant cells were prone to acquire respiratory deficits and showed a strong aggregation of the mitochondrial Hsp70 Ssq1 together with a concomitant defect in Fe/S protein biogenesis. In contrast, under respiring conditions, the mitochondrial Hsp70s Ssc1 and Ssq1 exhibited only a partial aggregation. We show that the induction of the zim17 mutant phenotype leads to strong import defects for Ssc1-dependent matrix-targeted precursor proteins that correlate with a significantly reduced binding of newly imported substrate proteins to Ssc1. We conclude that Zim17 is not only required for the maintenance of mtHsp70 solubility but also directly assists the functional interaction of mtHsp70 with substrate proteins in a J-type co-chaperone-dependent manner.  相似文献   
183.
Membrane protein insertion and topogenesis generally occur at the Sec61 translocon in the endoplasmic reticulum membrane. During this process, membrane spanning segments may adopt two distinct orientations with either their N- or C-terminus translocated into the ER lumen. While different topogenic determinants in membrane proteins, such as flanking charges, polypeptide folding, and hydrophobicity, have been identified, it is not well understood how the translocon and/or associated components decode them. Here we present evidence that the translocon-associated protein (TRAP) complex is involved in membrane protein topogenesis in vivo. Small interfering RNA (siRNA)-mediated silencing of the TRAP complex in HeLa cells enhanced the topology effect of mutating the flanking charges of a signal-anchor, but not of increasing signal hydrophobicity. The results suggest a role of the TRAP complex in moderating the ‘positive-inside’ rule.  相似文献   
184.
Gravity perception and gravitropic response are essential for plant development. In herbaceous species, it is widely accepted that one of the primary events in gravity perception involves the displacement of amyloplasts within specialized cells. However, the early signaling events leading to stem reorientation are not fully known, especially in woody species in which primary and secondary growth occur. Thirty-six percent of the identified proteins that were differentially expressed after gravistimulation were established as potential Thioredoxin targets. In addition, Thioredoxin h expression was induced following gravistimulation. In situ immunolocalization indicated that Thioredoxin h protein co-localized with the amyloplasts located in the endodermal cells. These investigations suggest the involvement of Thioredoxin h in the first events of signal transduction in inclined poplar stems, leading to reaction wood formation.  相似文献   
185.
Increasing land use intensity and human influence are leading to a reduction in plant and animal species diversity. However, little is known about how these changes may affect higher trophic levels, apart from simply reducing species numbers. Here we investigated, over 3 years, the influence of different land practices on a tritrophic system in grassland habitats. The system consisted of the host plant Plantago lanceolata L. (Plantaginaceae), two monophagous weevils, Mecinus labilis Herbst and Mecinus pascuorum Gyllenhal (Coleoptera: Curculionidae), and their parasitoid Mesopolobus incultus Walker (Hymenoptera: Pteromalidae). At over 70 sites across three geographic regions in Germany, we measured plant species diversity and vegetation structure, as well as abundance of P. lanceolata, the two weevils, and the parasitoid. Land use intensity (fertilization) and type (mowing vs. grazing) negatively affected not only plant species richness but also the occurrence of the two specialized herbivores and their parasitoid. In contrast, land use had a mostly positive effect on host plant size, vegetation structure, and parasitization rate. This study reveals that intensification of land use influences higher trophic organisms even without affecting the availability of the host plant. The observed relationships between land use, vegetation complexity, and the tritrophic system are not restricted locally; rather they are measureable along a broad range of environmental conditions and years throughout Germany. Our findings may have important implications for the conservation of insect species of nutrient‐poor grasslands.  相似文献   
186.
Rib collagen of 51 juveniles and 11 adult females from the late medieval Fishergate House cemetery site (York, UK) were analyzed using nitrogen and carbon stable isotope ratio analysis to determine the weaning age for this population and to reconstruct diet. The juveniles' ages ranged from fetal to 5–6 years, while the females were of reproductive age. Previous researchers suggested that the children from Fishergate House might have been weaned later than the medieval British norm of 2 years, based on a mortality peak at 4–6 years of age. The results show weaning was complete by 2 years of age, agreeing with previous British weaning studies. The adult female δ15N values have a mean of 11.4‰ ± 1.1‰ and the δ13C values have a mean of ?19.4‰ ± 0.4‰. These findings are consistent with previous isotopic studies of female diet in York during this period, though slightly lower. The weaned juvenile nitrogen values were found to be higher than the adult females (12.4‰ ± 1.0‰ for δ15N and ?19.7‰ ± 0.5‰ for δ13C), which might indicate a dependence on higher trophic level proteins such as marine fish or pork. Marine fish is considered a high status food and children are considered low‐status individuals at this time, making this a particularly interesting finding. Weaning does not appear to coincide with peak mortality, suggesting environment factors may be playing a larger role in child mortality at Fishergate House. Am J Phys Anthropol 152:407–416, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
187.
Plants encode a poorly understood superfamily of developmentally expressed cell wall hydroxyproline‐rich glycoproteins (HRGPs). One, EXTENSIN3 (EXT3) of the 168 putative HRGPs, is critical in the first steps of new wall assembly, demonstrated by broken and misplaced walls in its lethal homozygous mutant. Here we report the findings of phenotypic (not genotypic) revertants of the ext3 mutant and in‐depth analysis including microarray and qRT‐PCR (polymerase chain reaction). The aim was to identify EXT3 substitute(s), thus gaining a deeper understanding of new wall assembly. The data show differential expression in the ext3 mutant that included 61% (P ≤ 0.05) of the HRGP genes, and ability to self‐rescue by reprogramming expression. Independent revertants had reproducible expression networks, largely heritable over the four generations tested, with some genes displaying transgenerational drift towards wild‐type expression levels. Genes for nine candidate regulatory proteins as well as eight candidate HRGP building materials and/or facilitators of new wall assembly or maintenance, in the (near) absence of EXT3 expression, were identified. Seven of the HRGP fit the current model of EXT function. In conclusion, the data on phenotype comparisons and on differential expression of the genes‐of‐focus provide strong evidence that different combinations of HRGPs regulated by alternative gene expression networks, can make functioning cell walls, resulting in (apparently) normal plant growth and development. More broadly, this has implications for interpreting the cause of any mutant phenotype, assigning gene function, and genetically modifying plants for utilitarian purposes.  相似文献   
188.
Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore‐induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up‐regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.  相似文献   
189.
Anti-apoptotic Bcl-2 family proteins are important oncology therapeutic targets. To date, BH3 mimetics that abrogate anti-apoptotic activity have largely been directed at Bcl-2 and/or Bcl-xL. One observed mechanism of resistance to these inhibitors is increased Mcl-1 levels in cells exposed to such therapeutics. For this reason, and because Mcl-1 is important in the onset of lymphoid, myeloid, and other cancers, it has become a target of great interest. However, small molecule inhibitors displaying potency and selectivity for Mcl-1 are lacking. Identifying such compounds has been challenging due to difficulties in translating the target selectivity observed at the biochemical level to the cellular level. Herein we report the results of an HTS strategy coupled with directed hit optimization. Compounds identified have selective Mcl-1 inhibitory activity with greater than 100-fold reduced affinity for Bcl-xL. The selectivity of these compounds at the cellular level was validated using BH3 profiling, a novel personalized diagnostic approach. This assay provides an important functional biomarker that allows for the characterization of cells based upon their dependencies on various anti-apoptotic Bcl-2 proteins. We demonstrate that cells dependent on Mcl-1 or Bcl-2/Bcl-xL for survival are commensurately responsive to compounds that genuinely target those proteins. The identification of compound 9 with uniquely validated and selective Mcl-1 inhibitory activity provides a valuable tool to those studying the intrinsic apoptosis pathway and highlights an important approach in the development of a first-in-class cancer therapeutic.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号