首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7446篇
  免费   1045篇
  8491篇
  2023年   43篇
  2022年   100篇
  2021年   174篇
  2020年   107篇
  2019年   141篇
  2018年   157篇
  2017年   120篇
  2016年   230篇
  2015年   374篇
  2014年   427篇
  2013年   462篇
  2012年   662篇
  2011年   646篇
  2010年   434篇
  2009年   356篇
  2008年   454篇
  2007年   504篇
  2006年   508篇
  2005年   521篇
  2004年   463篇
  2003年   377篇
  2002年   411篇
  2001年   52篇
  2000年   33篇
  1999年   65篇
  1998年   73篇
  1997年   50篇
  1996年   45篇
  1995年   41篇
  1994年   40篇
  1993年   40篇
  1992年   44篇
  1991年   22篇
  1990年   24篇
  1989年   25篇
  1988年   17篇
  1987年   27篇
  1986年   24篇
  1985年   18篇
  1984年   18篇
  1983年   11篇
  1982年   19篇
  1981年   17篇
  1980年   20篇
  1979年   15篇
  1978年   12篇
  1977年   9篇
  1976年   11篇
  1975年   8篇
  1974年   9篇
排序方式: 共有8491条查询结果,搜索用时 0 毫秒
51.
Nuclear localization of enhanced green fluorescent protein homomultimers   总被引:4,自引:0,他引:4  
The green fluorescent protein (GFP) and its variants are used in many studies to determine the subcellular localization of other proteins by analyzing fusion proteins. The main problem for nuclear localization studies is the fact that, to some extent, GFP translocates to the nucleus on its own. Because the nuclear import could be due to unspecific diffusion of the relatively small GFP through the nuclear pores, we analyzed the localization of multimers of a GFP variant, the enhanced GFP (EGFP). By detecting the fluorescence of the expressed proteins in gels after nonreducing SDS-PAGE, we demonstrate the integrity of the expressed proteins. Nevertheless, even EGFP homotetramers and homohexamers are found in the nuclei of the five analyzed mammalian cell lines. The use of fusion constructs of small proteins with multimeric EGFP alone, therefore, is not adequate to prove nuclear import processes. Fusion to tetrameric EGFP in combination with a careful quantification of the fluorescence intensities in the nucleus and cytoplasm might be sufficient in many cases to identify a significant difference between the fusion protein and tetrameric EGFP alone to deduce a nuclear localization signal.  相似文献   
52.
Arbuscular mycorrhizal fungi (AMF) provide a number of ecosystem services as important members of the soil microbial community. Increasing evidence suggests AMF diversity is at least partially controlled by the identities of plants in the host plant neighborhood. However, much of this evidence comes from greenhouse studies or work in invaded systems dominated by single plant species, and has not been tested in species-rich grasslands. We worked in 67 grasslands spread across the three German Biodiversity Exploratories that are managed primarily as pastures and meadows, and collected data on AMF colonization, AMF richness, AMF community composition, plant diversity, and land use around focal Plantago lanceolata plants. We analyzed the data collected within each Exploratory (ALB Schwäbische Alb, HAI Hainich-Dün, SCH Schorfheide-Chorin) separately, and used variance partitioning to quantify the contribution of land use, host plant neighborhood, and spatial arrangement to the effect on AMF community composition. We performed canonical correspondence analysis to quantify the effect of each factor independently by removing the variation explained by the other factors. AMF colonization declined with increasing land use intensity (LUI) along with concurrent increases in non-AMF, suggesting that the ability of AMF to provide protection from pathogens declined under high LUI. In ALB and HAI mowing frequency and percent cover of additional P. lanceolata in the host plant neighborhood were important for AMF community composition. The similar proportional contribution of land use and host neighborhood to AMF community composition in a focal plant rhizosphere suggests that the diversity of this important group of soil microbes is similarly sensitive to changes at large and small scales.  相似文献   
53.
Telomeres are protective structures at the ends of eukaryotic chromosomes. The loss of telomeres through cell division and oxidative stress is related to cellular aging, organismal growth and disease. In this way, telomeres link molecular and cellular mechanisms with organismal processes, and may explain variation in a number of important life-history traits. Here, we discuss how telomere biology relates to the study of physiological ecology and life history evolution. We emphasize current knowledge on how ...  相似文献   
54.
The tumour suppressor gene BRCA1 encodes a 220 kDa protein that participates in multiple cellular processes. The BRCA1 protein contains a tandem of two BRCT repeats at its carboxy-terminal region. The majority of disease-associated BRCA1 mutations affect this region and provide to the BRCT repeats a central role in the BRCA1 tumour suppressor function. The BRCT repeats have been shown to mediate phospho-dependant protein-protein interactions. They recognize phosphorylated peptides using a recognition groove that spans both BRCT repeats. We previously identified an interaction between the tandem of BRCA1 BRCT repeats and ACCA, which was disrupted by germ line BRCA1 mutations that affect the BRCT repeats. We recently showed that BRCA1 modulates ACCA activity through its phospho-dependent binding to ACCA. To delineate the region of ACCA that is crucial for the regulation of its activity by BRCA1, we searched for potential phosphorylation sites in the ACCA sequence that might be recognized by the BRCA1 BRCT repeats. Using sequence analysis and structure modelling, we proposed the Ser1263 residue as the most favourable candidate among six residues, for recognition by the BRCA1 BRCT repeats. Using experimental approaches, such as GST pull-down assay with Bosc cells, we clearly showed that phosphorylation of only Ser1263 was essential for the interaction of ACCA with the BRCT repeats. We finally demonstrated by immunoprecipitation of ACCA in cells, that the whole BRCA1 protein interacts with ACCA when phosphorylated on Ser1263.  相似文献   
55.
Autosomal Dominant Optic Atrophy (ADOA) is the most common inherited optic atrophy where vision impairment results from specific loss of retinal ganglion cells of the optic nerve. Around 60% of ADOA cases are linked to mutations in the OPA1 gene. OPA1 is a fission-fusion protein involved in mitochondrial inner membrane remodelling. ADOA presents with marked variation in clinical phenotype and varying degrees of vision loss, even among siblings carrying identical mutations in OPA1. To determine whether the degree of vision loss is associated with the level of mitochondrial impairment, we examined mitochondrial function in lymphoblast cell lines obtained from six large Australian OPA1-linked ADOA pedigrees. Comparing patients with severe vision loss (visual acuity [VA]<6/36) and patients with relatively preserved vision (VA>6/9) a clear defect in mitochondrial ATP synthesis and reduced respiration rates were observed in patients with poor vision. In addition, oxidative phosphorylation (OXPHOS) enzymology in ADOA patients with normal vision revealed increased complex II+III activity and levels of complex IV protein. These data suggest that OPA1 deficiency impairs OXPHOS efficiency, but compensation through increases in the distal complexes of the respiratory chain may preserve mitochondrial ATP production in patients who maintain normal vision. Identification of genetic variants that enable this response may provide novel therapeutic insights into OXPHOS compensation for preventing vision loss in optic neuropathies.  相似文献   
56.

Background  

Insertions and deletions of DNA segments (indels) are together with substitutions the major mutational processes that generate genetic variation. Here we focus on recent DNA insertions and deletions in protein coding regions of the human genome to investigate selective constraints on indels in protein evolution.  相似文献   
57.
Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type‐IV secretion system. Injected CagA becomes tyrosine‐phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation‐dependent and phosphorylation‐independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high‐resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence‐associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ‘master key’ that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin‐cytoskeletal rearrangements and the disruption of cell‐to‐cell junctions as well as proliferative, pro‐inflammatory and anti‐apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon.  相似文献   
58.
59.
60.
Summary The lkyB gene of Escherichia coli K12 has been cloned from the Clarke and Carbon colony bank by selecting a ColE1 plasmid conferring cholic acid resistance to lkyB mutants. The lkyB gene was localized on hybrid plasmid pJC778 by analysis of mutated plasmids generated by Tn5 insertions. Restriction analysis and complementation studies indicated that plasmid pJC778 carried genes nadA, lkyB and sucA which mapped at min 16.5; the lkyB + allele was dominant over the lkyB207 mutant allele. Analysis of cell envelope proteins from strains carrying plasmids pJC778 (lkyB +), pJC2578 or pJC2579 (lkyB::Tn5), as well as plasmid-coded proteins in a maxicell system, made it likely that the lkyB gene product was a membrane protein of molecular weight 42,000.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号