首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32395篇
  免费   16483篇
  国内免费   2篇
  2023年   55篇
  2022年   185篇
  2021年   558篇
  2020年   2280篇
  2019年   3829篇
  2018年   3958篇
  2017年   4200篇
  2016年   4278篇
  2015年   4336篇
  2014年   4032篇
  2013年   4488篇
  2012年   2351篇
  2011年   2059篇
  2010年   3416篇
  2009年   2096篇
  2008年   1082篇
  2007年   727篇
  2006年   727篇
  2005年   786篇
  2004年   711篇
  2003年   616篇
  2002年   645篇
  2001年   303篇
  2000年   216篇
  1999年   195篇
  1998年   80篇
  1997年   57篇
  1996年   52篇
  1995年   50篇
  1994年   47篇
  1993年   46篇
  1992年   50篇
  1991年   25篇
  1990年   25篇
  1989年   27篇
  1988年   19篇
  1987年   27篇
  1986年   25篇
  1985年   19篇
  1984年   19篇
  1983年   12篇
  1982年   22篇
  1981年   18篇
  1980年   22篇
  1979年   16篇
  1978年   14篇
  1977年   10篇
  1976年   11篇
  1975年   12篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
991.
The Escherichia coli lactose (lac) operon encodes the first genetic switch to be discovered, and lac remains a paradigm for studying negative and positive control of gene expression. Negative control is believed to involve competition of RNA polymerase and Lac repressor for overlapping binding sites. Contributions to the local Lac repressor concentration come from free repressor and repressor delivered to the operator from remote auxiliary operators by DNA looping. Long-standing questions persist concerning the actual role of DNA looping in the mechanism of promoter repression. Here, we use experiments in living bacteria to resolve four of these questions. We show that the distance dependence of repression enhancement is comparable for upstream and downstream auxiliary operators, confirming the hypothesis that repressor concentration increase is the principal mechanism of repression loops. We find that as few as four turns of DNA can be constrained in a stable loop by Lac repressor. We show that RNA polymerase is not trapped at repressed promoters. Finally, we show that constraining a promoter in a tight DNA loop is sufficient for repression even when promoter and operator do not overlap.  相似文献   
992.
993.
994.
995.
In this paper, we introduce a new estimator of a percentile residual life function with censored data under a monotonicity constraint. Specifically, it is assumed that the percentile residual life is a decreasing function. This assumption is useful when estimating the percentile residual life of units, which degenerate with age. We establish a law of the iterated logarithm for the proposed estimator, and its ‐equivalence to the unrestricted estimator. The asymptotic normal distribution of the estimator and its strong approximation to a Gaussian process are also established. We investigate the finite sample performance of the monotone estimator in an extensive simulation study. Finally, data from a clinical trial in primary biliary cirrhosis of the liver are analyzed with the proposed methods. One of the conclusions of our work is that the restricted estimator may be much more efficient than the unrestricted one.  相似文献   
996.
PTEN gene (phosphatase and tensin homolog deleted on chromosome ten, MIM 601628) is a tumor suppressor gene implicated in PTEN hamartoma tumor syndromes (PHTS) including Cowden syndrome, Bannayan–Riley–Ruvalcaba syndrome and Proteus-like syndrome. PTEN mutations have been more recently reported in children with macrocephaly and autism spectrum disorders or mental retardation, without other symptoms of PHTS. Although tumor risk has not been evaluated in these patients and their relatives, the same surveillance as for Cowden syndrome is usually proposed. We report a family including patients carrying a novel PTEN mutation and presenting with a mild phenotype consisting of macrocephaly, hypotonia during the first year of life and mild learning disabilities, without autistic features. None of these patients exhibited PTHS-related symptoms such as tumors, lipomas, vascular malformations or pigmented macules of the glans penis. This report raises the question of extending the indications of PTEN mutation screening to familial macrocephaly with learning disabilities. Detection of a mutation in this family led to difficult questions about surveillance, genetic counseling and familial information since the mother declined tumor screening and disclosure of genetic risk information to at-risk relatives.  相似文献   
997.
Glycerol‐3‐phosphate acyltransferase (GPAT) is involved in the first step in glycerolipid synthesis and is localized in both the endoplasmic reticulum (ER) and mitochondria. To clarify the functional differences between ER‐GPAT and mitochondrial (Mt)‐GPAT, we generated both GPAT mutants in C. elegans and demonstrated that Mt‐GPAT is essential for mitochondrial fusion. Mutation of Mt‐GPAT caused excessive mitochondrial fragmentation. The defect was rescued by injection of lysophosphatidic acid (LPA), a direct product of GPAT, and by inhibition of LPA acyltransferase, both of which lead to accumulation of LPA in the cells. Mitochondrial fragmentation in Mt‐GPAT mutants was also rescued by inhibition of mitochondrial fission protein DRP‐1 and by overexpression of mitochondrial fusion protein FZO‐1/mitofusin, suggesting that the fusion/fission balance is affected by Mt‐GPAT depletion. Mitochondrial fragmentation was also observed in Mt‐GPAT‐depleted HeLa cells. A mitochondrial fusion assay using HeLa cells revealed that Mt‐GPAT depletion impaired mitochondrial fusion process. We postulate from these results that LPA produced by Mt‐GPAT functions not only as a precursor for glycerolipid synthesis but also as an essential factor of mitochondrial fusion.  相似文献   
998.
999.
1000.
The IFNL4 gene is a recently discovered type III interferon, which in a significant fraction of the human population harbours a frameshift mutation abolishing the IFNλ4 ORF. The expression of IFNλ4 is correlated with both poor spontaneous clearance of hepatitis C virus (HCV) and poor response to treatment with type I interferon. Here, we show that the IFNL4 gene encodes an active type III interferon, named IFNλ4, which signals through the IFNλR1 and IL‐10R2 receptor chains. Recombinant IFNλ4 is antiviral against both HCV and coronaviruses at levels comparable to IFNλ3. However, the secretion of IFNλ4 is impaired compared to that of IFNλ3, and this impairment is not due to a weak signal peptide, which was previously believed. We found that IFNλ4 gets N‐linked glycosylated and that this glycosylation is required for secretion. Nevertheless, this glycosylation is not required for activity. Together, these findings result in the paradox that IFNλ4 is strongly antiviral but a disadvantage during HCV infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号