首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7470篇
  免费   1053篇
  8523篇
  2023年   43篇
  2022年   101篇
  2021年   174篇
  2020年   107篇
  2019年   141篇
  2018年   157篇
  2017年   121篇
  2016年   231篇
  2015年   374篇
  2014年   427篇
  2013年   463篇
  2012年   662篇
  2011年   646篇
  2010年   434篇
  2009年   356篇
  2008年   454篇
  2007年   504篇
  2006年   508篇
  2005年   521篇
  2004年   464篇
  2003年   378篇
  2002年   411篇
  2001年   53篇
  2000年   33篇
  1999年   66篇
  1998年   73篇
  1997年   50篇
  1996年   46篇
  1995年   41篇
  1994年   40篇
  1993年   40篇
  1992年   44篇
  1991年   23篇
  1990年   28篇
  1989年   26篇
  1988年   17篇
  1987年   28篇
  1986年   25篇
  1985年   20篇
  1984年   18篇
  1983年   11篇
  1982年   19篇
  1981年   17篇
  1980年   20篇
  1979年   16篇
  1978年   12篇
  1977年   10篇
  1976年   12篇
  1975年   9篇
  1974年   12篇
排序方式: 共有8523条查询结果,搜索用时 0 毫秒
111.
A new series of FTase inhibitors containing a tricyclic moiety--dioxodibenzothiazepine or dibenzocycloheptane--has been designed and synthesized. Among them, dioxodibenzothiazepine 18d displayed significant inhibitory FTase activity (IC(50)=17.3 nM) and antiproliferative properties.  相似文献   
112.
The repair protein 8-oxo-7,8-dihydroguanine glycosylase (OGG1) initiates base excision repair (BER) in mammalian cells by removing the oxidized base 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Interestingly, OGG1 has been implicated in somatic expansion of the trinucleotide repeat (TNR) sequence CAG/CTG. Furthermore, a 'toxic oxidation cycle' has been proposed for age-dependent expansion in somatic cells. In this cycle, duplex TNR DNA is (1) oxidized by endogenous species; (2) BER is initiated by OGG1 and the DNA is further processed by AP endonuclease 1 (APE1); (3) a stem-loop hairpin forms during strand-displacement synthesis by polymerase β (pol β); (4) the hairpin is ligated and (5) incorporated into duplex DNA to generate an expanded CAG/CTG region. This expanded region is again subject to oxidation and the cycle continues. We reported previously that the hairpin adopted by TNR repeats contains a hot spot for oxidation. This finding prompted us to examine the possibility that the generation of a hairpin during a BER event exacerbates the toxic oxidation cycle due to accumulation of damage. Therefore, in this work we used mixed-sequence and TNR substrates containing a site-specific 8-oxoG lesion to define the kinetic parameters of human OGG1 (hOGG1) activity on duplex and hairpin substrates. We report that hOGG1 activity on TNR duplexes is indistinguishable from a mixed-sequence control. Thus, BER is initiated on TNR sequences as readily as non-repetitive DNA in order to start the toxic oxidation cycle. However, we find that for hairpin substrates hOGG1 has reduced affinity and excises 8-oxoG at a significantly slower rate as compared to duplexes. Therefore, 8-oxoG is expected to accumulate in the hairpin intermediate. This damage-containing hairpin can then be incorporated into duplex, resulting in an expanded TNR tract that now contains an oxidative lesion. Thus, the cycle restarts and the DNA can incrementally expand.  相似文献   
113.
Ubiquitination and deubiquitination regulate various cellular processes. We have recently shown that the deubiquitinating enzyme Associated Molecule with the SH3 domain of STAM3 (AMSH3) is involved in vacuole biogenesis and intracellular trafficking in Arabidopsis thaliana. However, little is known about the identity of its interaction partners and deubiquitination substrates. Here, we provide evidence that AMSH3 interacts with ESCRT-III subunits VPS2.1 and VPS24.1. The interaction of ESCRT-III subunits with AMSH3 is mediated by the MIM1 domain and depends on the MIT domain of AMSH3. We further show that AMSH3, VPS2.1, and VPS24.1 localize to class E compartments when ESCRT-III disassembly is inhibited by coexpression of inactive Suppressor of K+ transport Defect 1 (SKD1), an AAA-ATPase involved in the disassembly of ESCRT-III. We also provide evidence that AMSH3 and SKD1 compete for binding to VPS2.1. Furthermore, we show that the loss of AMSH3 enzymatic activity leads to the formation of cellular compartments that contain AMSH3, VPS2.1, and VPS24.1. Taken together, our study presents evidence that AMSH3 interacts with classical core ESCRT-III components and thereby provides a molecular framework for the function of AMSH3 in plants.  相似文献   
114.
Bacterial biofilms are complex microbial communities that are common in nature and are being recognized increasingly as an important determinant of bacterial virulence. However, the structural determinants of bacterial aggregation and eventual biofilm formation have been poorly defined. In Gram‐negative bacteria, a major subgroup of extracellular proteins called self‐associating autotransporters (SAATs) can mediate cell–cell adhesion and facilitate biofilm formation. In this study, we used the Haemophilus influenzae Hap autotransporter as a prototype SAAT to understand how bacteria associate with each other. The crystal structure of the H. influenzae HapS passenger domain (harbouring the SAAT domain) was determined to 2.2 Å by X‐ray crystallography, revealing an unprecedented intercellular oligomerization mechanism for cell–cell interaction. The C‐terminal SAAT domain folds into a triangular‐prism‐like structure that can mediate Hap–Hap dimerization and higher degrees of multimerization through its F1–F2 edge and F2 face. The intercellular multimerization can give rise to massive buried surfaces that are required for overcoming the repulsive force between cells, leading to bacterial cell–cell interaction and formation of complex microcolonies.  相似文献   
115.
Understanding the interactions between human immunodeficiency virus type 1 (HIV-1) virions and antibodies (Ab) produced during acute HIV-1 infection (AHI) is critical for defining antibody antiviral capabilities. Antibodies that bind virions may prevent transmission by neutralization of virus or mechanically prevent HIV-1 migration through mucosal layers. In this study, we quantified circulating HIV-1 virion-immune complexes (ICs), present in approximately 90% of AHI subjects, and compared the levels and antibody specificity to those in chronic infection. Circulating HIV-1 virions coated with IgG (immune complexes) were in significantly lower levels relative to the viral load in acute infection than in chronic HIV-1 infection. The specificities of the antibodies in the immune complexes differed between acute and chronic infection (anti-gp41 Ab in acute infection and anti-gp120 in chronic infection), potentially suggesting different roles in immunopathogenesis for complexes arising at different stages of infection. We also determined the ability of circulating IgG from AHI to bind infectious versus noninfectious virions. Similar to a nonneutralizing anti-gp41 monoclonal antibody (MAb), purified plasma IgG from acute HIV-1 subjects bound both infectious and noninfectious virions. This was in contrast to the neutralizing antibody 2G12 MAb that bound predominantly infectious virions. Moreover, the initial antibody response captured acute HIV-1 virions without selection for different HIV-1 envelope sequences. In total, this study demonstrates that the composition of immune complexes are dynamic over the course of HIV-1 infection and are comprised initially of antibodies that nonselectively opsonize both infectious and noninfectious virions, likely contributing to the lack of efficacy of the antibody response during acute infection.  相似文献   
116.
We have identified a means by which agonist-evoked responses of nicotinic receptors can be conditionally eliminated. Modification of α7L119C mutants by the sulfhydryl reagent 2-aminoethyl methanethiosulfonate (MTSEA) reduces responses to acetylcholine (ACh) by more than 97%, whereas corresponding mutations in muscle-type receptors produce effects that depend on the specific subunits mutated and ACh concentration. We coexpressed α7L119C subunits with pseudo wild-type α7C116S subunits, as well as ACh-insensitive α7Y188F subunits with wild-type α7 subunits in Xenopus laevis oocytes using varying ratios of cRNA. When mutant α7 cRNA was coinjected at a 5:1 ratio with wild-type cRNA, net charge responses to 300 μM ACh were retained by α7L119C-containing mutants after MTSEA modification and by the ACh-insensitive Y188F-containing mutants, even though the expected number of ACh-sensitive wild-type binding sites would on average be fewer than two per receptor. Responses of muscle-type receptors with one MTSEA-sensitive subunit were reduced at low ACh concentrations, but much less of an effect was observed when ACh concentrations were high (1 mM), indicating that saturation of a single binding site with agonist can evoke strong activation of nicotinic ACh receptors. Single-channel patch clamp analysis revealed that the burst durations of fetal wild-type and α1β1γδL121C receptors were equivalent until the α1β1γδL121C mutants were exposed to MTSEA, after which the majority (81%) of bursts were brief (≤2 ms). The longest duration events of the receptors modified at only one binding site were similar to the long bursts of native receptors traditionally associated with the activation of receptors with two sites containing bound agonists.  相似文献   
117.
The cholesterol metabolism pathway in Mycobacterium tuberculosis (M. tb) is a potential source of energy as well as secondary metabolite production that is important for survival of M. tb in the host macrophage. Oxidation and isomerization of 3β-hydroxysterols to 4-en-3-ones is requisite for sterol metabolism and the reaction is catalyzed by 3β-hydroxysteroid dehydrogenase (Rv1106c). Three series of 6-azasteroids and 4-azasteroids were employed to define the substrate preferences of M. tb 3β-hydroxysteroid dehydrogenase. 6-Azasteroids with large, hydrophobic side chains at the C17 position are the most effective inhibitors. Substitutions at C1, C2, C4 and N6 were poorly tolerated. Our structure-activity studies indicate that the 6-aza version of cholesterol is the best and tightest binding competitive inhibitor (Ki = 100 nM) of the steroid substrate and are consistent with cholesterol being the preferred substrate of M. tb 3β-hydroxysteroid dehydrogenase.  相似文献   
118.
The endoplasmic reticulum (ER) is a highly dynamic organelle. It is composed of four subcompartments including nuclear envelope (NE), rough ER (rER), smooth ER (sER) and transitional ER (tER). The subcompartments are interconnected, can fragment and dissociate and are able to reassemble again. They coordinate with cell function by way of protein regulators in the surrounding cytosol. The activity of the many associated molecular machines of the ER as well as the fluid nature of the limiting membrane of the ER contribute extensively to the dynamics of the ER. This review examines the properties of the ER that permit its isolation and purification and the physiological conditions that permit reconstitution both in vitro and in vivo in normal and in disease conditions.  相似文献   
119.
Human biliverdin reductase (hBVR), a dual specificity kinase (Ser/Thr/Tyr) is, as protein kinase C (PKC) betaII, activated by insulin and free radicals (Miralem, T., Hu, Z., Torno, M. D., Lelli, K. M., and Maines, M. D. (2005) J. Biol. Chem. 280, 17084-17092; Lerner-Marmarosh, N., Shen, J., Torno, M. D., Kravets, A., Hu, Z., and Maines, M. D. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 7109-7114). Here, by using 293A cells co-transfected with pcDNA3-hBVR and PKC betaII plasmids, we report the co-immunoprecipitation of the proteins and co-purification in the glutathione S-transferase (GST) pulldown assay. hBVR and PKC betaII, but not the reductase and PKC zeta, transphosphorylated in assay systems supportive of activity of only one of the kinases. PKC betaII K371R mutant protein ("kinase-dead") was also a substrate for hBVR. The reductase increased the Vmax but not the apparent Km values of PKC betaII for myelin basic protein; activation was independent of phospholipids and extended to the phosphorylation of S2, a PKC-specific substrate. The increase in substrate phosphorylation was blocked by specific inhibitors of conventional PKCs and attenuated by sihBVR. The effect of the latter could be rescued by subsequent overexpression of hBVR. To a large extent, the activation was a function of the hBVR N-terminal chain of valines and intact ATP-binding site and the cysteine-rich C-terminal segment. The cobalt protoporphyrin-activated hBVR phosphorylated a threonine in a peptide corresponding to the Thr500 in the human PKC betaII activation loop. Neither serine nor threonine residues in peptides corresponding to other phosphorylation sites of the PKC betaII nor PKC zeta activation loop-derived peptides were substrates. The phosphorylation of Thr500 was confirmed by immunoblotting of hBVR.PKC betaII immunocomplex. The potential biological relevance of the hBVR activation of PKC betaII was suggested by the finding that in cells transfected with the PKC betaII, hBVR augmented phorbol myristate acetate-mediated c-fos expression, and infection with sihBVR attenuated the response. Also, in cells overexpressing hBVR and PKC betaII, as well as in untransfected cells, upon treatment with phorbol myristate acetate, the PKC translocated to the plasma membrane and co-localized with hBVR. hBVR activation of PKC betaII underscores its potential function in propagation of signals relayed through PKCs.  相似文献   
120.
Nuclear localization of enhanced green fluorescent protein homomultimers   总被引:4,自引:0,他引:4  
The green fluorescent protein (GFP) and its variants are used in many studies to determine the subcellular localization of other proteins by analyzing fusion proteins. The main problem for nuclear localization studies is the fact that, to some extent, GFP translocates to the nucleus on its own. Because the nuclear import could be due to unspecific diffusion of the relatively small GFP through the nuclear pores, we analyzed the localization of multimers of a GFP variant, the enhanced GFP (EGFP). By detecting the fluorescence of the expressed proteins in gels after nonreducing SDS-PAGE, we demonstrate the integrity of the expressed proteins. Nevertheless, even EGFP homotetramers and homohexamers are found in the nuclei of the five analyzed mammalian cell lines. The use of fusion constructs of small proteins with multimeric EGFP alone, therefore, is not adequate to prove nuclear import processes. Fusion to tetrameric EGFP in combination with a careful quantification of the fluorescence intensities in the nucleus and cytoplasm might be sufficient in many cases to identify a significant difference between the fusion protein and tetrameric EGFP alone to deduce a nuclear localization signal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号