全文获取类型
收费全文 | 7465篇 |
免费 | 1046篇 |
专业分类
8511篇 |
出版年
2023年 | 43篇 |
2022年 | 100篇 |
2021年 | 174篇 |
2020年 | 107篇 |
2019年 | 141篇 |
2018年 | 157篇 |
2017年 | 121篇 |
2016年 | 230篇 |
2015年 | 376篇 |
2014年 | 428篇 |
2013年 | 463篇 |
2012年 | 662篇 |
2011年 | 647篇 |
2010年 | 434篇 |
2009年 | 357篇 |
2008年 | 455篇 |
2007年 | 504篇 |
2006年 | 508篇 |
2005年 | 521篇 |
2004年 | 464篇 |
2003年 | 378篇 |
2002年 | 411篇 |
2001年 | 53篇 |
2000年 | 33篇 |
1999年 | 65篇 |
1998年 | 73篇 |
1997年 | 50篇 |
1996年 | 45篇 |
1995年 | 41篇 |
1994年 | 40篇 |
1993年 | 40篇 |
1992年 | 44篇 |
1991年 | 22篇 |
1990年 | 25篇 |
1989年 | 26篇 |
1988年 | 17篇 |
1987年 | 27篇 |
1986年 | 24篇 |
1985年 | 19篇 |
1984年 | 19篇 |
1983年 | 11篇 |
1982年 | 19篇 |
1981年 | 17篇 |
1980年 | 20篇 |
1979年 | 15篇 |
1978年 | 12篇 |
1977年 | 9篇 |
1976年 | 14篇 |
1975年 | 10篇 |
1974年 | 9篇 |
排序方式: 共有8511条查询结果,搜索用时 22 毫秒
71.
72.
Nicole S. Moin Katelyn A. Nelson Alexander Bush Anne E. Bernhard 《Applied and environmental microbiology》2009,75(23):7461-7468
Diversity and abundance of ammonia-oxidizing Betaproteobacteria (β-AOB) and archaea (AOA) were investigated in a New England salt marsh at sites dominated by short or tall Spartina alterniflora (SAS and SAT sites, respectively) or Spartina patens (SP site). AOA amoA gene richness was higher than β-AOB amoA richness at SAT and SP, but AOA and β-AOB richness were similar at SAS. β-AOB amoA clone libraries were composed exclusively of Nitrosospira-like amoA genes. AOA amoA genes at SAT and SP were equally distributed between the water column/sediment and soil/sediment clades, while AOA amoA sequences at SAS were primarily affiliated with the water column/sediment clade. At all three site types, AOA were always more abundant than β-AOB based on quantitative PCR of amoA genes. At some sites, we detected 109 AOA amoA gene copies g of sediment−1. Ratios of AOA to β-AOB varied over 2 orders of magnitude among sites and sampling dates. Nevertheless, abundances of AOA and β-AOB amoA genes were highly correlated. Abundance of 16S rRNA genes affiliated with Nitrosopumilus maritimus, Crenarchaeota group I.1b, and pSL12 were positively correlated with AOA amoA abundance, but ratios of amoA to 16S rRNA genes varied among sites. We also observed a significant effect of pH on AOA abundance and a significant salinity effect on both AOA and β-ΑΟΒ abundance. Our results expand the distribution of AOA to salt marshes, and the high numbers of AOA at some sites suggest that salt marsh sediments serve as an important habitat for AOA.Nitrification, the sequential oxidation of ammonia to nitrite and nitrate, is a critical step in the nitrogen cycle and is mediated by a suite of phylogenetically and physiologically distinct microorganisms. The recent discovery of ammonia oxidation among Archaea (17, 38) has led to a dramatic shift in the current model of nitrification and to new questions of niche differentiation between putative ammonia-oxidizing Archaea (AOA) and the more-well-studied ammonia-oxidizing Betaproteobacteria (β-AOB). Based on surveys of 16S rRNA genes and archaeal amoA genes, it is evident that AOA occupy a wide range of niches (10), suggesting a physiologically diverse group of Archaea. Additionally, in studies where AOA and β-AOB were both targeted, AOA were typically more abundant than their bacterial counterparts (19, 21, 42). However, there are reports of β-AOB outnumbering AOA in estuarine systems (6, 33), suggesting a possible shift in competitive dominance under certain conditions.Patterns of β-AOB diversity in estuaries have been well characterized and appear to be regulated by similar mechanisms within geographically disparate systems (4, 11, 32). However, AOA distribution and their role in nitrification relative to β-AOB remain to be determined. A few studies have begun to address this question in different estuaries, but no unifying patterns or mechanisms have emerged. Although β-AOB have been well studied along estuarine salinity gradients (1, 3, 4, 7, 11, 13, 22, 33, 39) and recent studies have begun to address AOA in estuaries (1, 6, 22, 32, 33), few have investigated β-AOB in salt marshes (9), and none has included AOA.In this study, we investigated the distribution and abundance of AOA and β-AOB based on the distribution and abundance of amoA genes in salt marsh sediments dominated by different types of vegetation. Although we equate the presence of archaeal amoA genes with the genetic potential to oxidize ammonia, we acknowledge the possibility that all Archaea that have amoA genes may not all represent functional ammonia oxidizers. Vegetation patterns of New England salt marshes are strongly correlated with marsh elevation and are controlled by a combination of interspecific competition and tolerance to physico-chemical stress (28). The dominant grasses of New England salt marshes are Spartina alterniflora and Spartina patens, which typically grow as pure stands. S. alterniflora is found in two phenotypically distinct but genetically identical forms, a tall and a short growth form (34). The tall S. alterniflora grows to heights of 1 to 2 m and is typically found at the edges of the marsh and along creek banks (SAT sites), while the short-form S. alterniflora may reach heights of only 30 cm and is found in sites (SAS sites) slightly higher on the marsh where soil drainage is limited and conditions are more reduced compared to SAT sites (14). Conversely, S. patens, due to its lower tolerance of salt and more reduced conditions, is found in sites (SP sites) highest on the marsh, in areas that receive less flooding (5). Because the marsh is subjected to daily tidal fluctuations, most sites experience periods of anoxia, the degree of which depends on the marsh elevation. We hypothesized that ammonia-oxidizing communities in areas dominated by different marsh grasses would reflect the different edaphic conditions associated with each type of grass, due to differences in vertical zonation in the marsh. 相似文献
73.
Eric Jain Amos Bairoch Severine Duvaud Isabelle Phan Nicole Redaschi Baris E Suzek Maria J Martin Peter McGarvey Elisabeth Gasteiger 《BMC bioinformatics》2009,10(1):136-19
Background
The UniProt consortium was formed in 2002 by groups from the Swiss Institute of Bioinformatics (SIB), the European Bioinformatics Institute (EBI) and the Protein Information Resource (PIR) at Georgetown University, and soon afterwards the website was set up as a central entry point to UniProt resources. Requests to this address were redirected to one of the three organisations' websites. While these sites shared a set of static pages with general information about UniProt, their pages for searching and viewing data were different. To provide users with a consistent view and to cut the cost of maintaining three separate sites, the consortium decided to develop a common website for UniProt. Following several years of intense development and a year of public beta testing, the domain was switched to the newly developed site described in this paper in July 2008. 相似文献74.
75.
Ágnes Baross Allen D Delaney H Irene Li Tarun Nayar Stephane Flibotte Hong Qian Susanna Y Chan Jennifer Asano Adrian Ally Manqiu Cao Patricia Birch Mabel Brown-John Nicole Fernandes Anne Go Giulia Kennedy Sylvie Langlois Patrice Eydoux JM Friedman Marco A Marra 《BMC bioinformatics》2007,8(1):1-18
Background
Genomic deletions and duplications are important in the pathogenesis of diseases, such as cancer and mental retardation, and have recently been shown to occur frequently in unaffected individuals as polymorphisms. Affymetrix GeneChip whole genome sampling analysis (WGSA) combined with 100 K single nucleotide polymorphism (SNP) genotyping arrays is one of several microarray-based approaches that are now being used to detect such structural genomic changes. The popularity of this technology and its associated open source data format have resulted in the development of an increasing number of software packages for the analysis of copy number changes using these SNP arrays.Results
We evaluated four publicly available software packages for high throughput copy number analysis using synthetic and empirical 100 K SNP array data sets, the latter obtained from 107 mental retardation (MR) patients and their unaffected parents and siblings. We evaluated the software with regards to overall suitability for high-throughput 100 K SNP array data analysis, as well as effectiveness of normalization, scaling with various reference sets and feature extraction, as well as true and false positive rates of genomic copy number variant (CNV) detection.Conclusion
We observed considerable variation among the numbers and types of candidate CNVs detected by different analysis approaches, and found that multiple programs were needed to find all real aberrations in our test set. The frequency of false positive deletions was substantial, but could be greatly reduced by using the SNP genotype information to confirm loss of heterozygosity. 相似文献76.
77.
Frederick?R.?PreteEmail author Justin?L.?Komito Salina?Dominguez Gavin?Svenson LeoLin?Y.?López Alex?Guillen Nicole?Bogdanivich 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2011,197(9):877-894
We assessed the differences in appetitive responses to visual stimuli by three species of praying mantis (Insecta: Mantodea),
Tenodera aridifolia sinensis, Mantis religiosa, and Cilnia humeralis. Tethered, adult females watched computer generated stimuli (erratically moving disks or linearly moving rectangles) that
varied along predetermined parameters. Three responses were scored: tracking, approaching, and striking. Threshold stimulus
size (diameter) for tracking and striking at disks ranged from 3.5 deg (C. humeralis) to 7.8 deg (M. religiosa), and from 3.3 deg (C. humeralis) to 11.7 deg (M. religiosa), respectively. Unlike the other species which struck at disks as large as 44 deg, T. a. sinensis displayed a preference for 14 deg disks. Disks moving at 143 deg/s were preferred by all species. M. religiosa exhibited the most approaching behavior, and with T. a. sinensis distinguished between rectangular stimuli moving parallel versus perpendicular to their long axes. C. humeralis did not make this distinction. Stimulus sizes that elicited the target behaviors were not related to mantis size. However,
differences in compound eye morphology may be related to species differences: C. humeralis’ eyes are farthest apart, and it has an apparently narrower binocular visual field which may affect retinal inputs to movement-sensitive
visual interneurons. 相似文献
78.
A critical role for tetraspanin CD151 in alpha3beta1 and alpha6beta4 integrin-dependent tumor cell functions on laminin-5 下载免费PDF全文
Winterwood NE Varzavand A Meland MN Ashman LK Stipp CS 《Molecular biology of the cell》2006,17(6):2707-2721
The basement membrane protein laminin-5 supports tumor cell adhesion and motility and is implicated at multiple steps of the metastatic cascade. Tetraspanin CD151 engages in lateral, cell surface complexes with both of the major laminin-5 receptors, integrins alpha3beta1 and alpha6beta4. To determine the role of CD151 in tumor cell responses to laminin-5, we used retroviral RNA interference to efficiently silence CD151 expression in epidermal carcinoma cells. Near total loss of CD151 had no effect on steady state cell surface expression of alpha3beta1, alpha6beta4, or other integrins with which CD151 associates. However, CD151-silenced carcinoma cells displayed markedly impaired motility on laminin-5, accompanied by unusually persistent lateral and trailing edge adhesive contacts. CD151 silencing disrupted alpha3beta1 integrin association with tetraspanin-enriched microdomains, reduced the bulk detergent extractability of alpha3beta1, and impaired alpha3beta1 internalization in cells migrating on laminin-5. Both alpha3beta1- and alpha6beta4-dependent cell adhesion to laminin-5 were also impaired in CD151-silenced cells. Reexpressing CD151 in CD151-silenced cells reversed the adhesion and motility defects. Finally, loss of CD151 also impaired migration but not adhesion on substrates other than laminin-5. These data show that CD151 plays a critical role in tumor cell responses to laminin-5 and reveal promotion of integrin recycling as a novel potential mechanism whereby CD151 regulates tumor cell migration. 相似文献
79.
Gregory M. Raner Jonathan I. Thompson Alice Haddy Valary Tangham Nicole Bynum G. Ramachandra Reddy David P. Ballou John H. Dawson 《Journal of inorganic biochemistry》2006,100(12):2045
Rapid mixing of substrate-free ferric cytochrome P450BM3–F87G with m-chloroperoxybenzoic acid (mCPBA) resulted in the sequential formation of two high-valent intermediates. The first was spectrally similar to compound I species reported previously for P450CAM and CYP 119 using mCPBA as an oxidant, and it featured a low intensity Soret absorption band characterized by shoulder at 370 nm. This is the first direct observation of a P450 compound I intermediate in a type II P450 enzyme. The second intermediate, which was much more stable at pH values below 7.0, was characterized by an intense Soret absorption peak at 406 nm, similar to that seen with P450CAM [T. Spolitak, J.H. Dawson, D.P. Ballou, J. Biol. Chem. 280 (2005) 20300–20309]. Double mixing experiments in which NADPH was added to the transient 406 nm-absorbing intermediate resulted in rapid regeneration of the resting ferric state, with the flavins of the flavoprotein domain in their reduced state. EPR results were consistent with this stable intermediate species being a cytochrome c peroxidase compound ES-like species containing a protein-based radical, likely localized on a nearby Trp or Tyr residue in the active site. Iodosobenzene, peracetic acid, and sodium m-periodate also generated the intermediate at 406 nm, but not the 370 nm intermediate, indicating a probable kinetic barrier to accumulating compound I in reactions with these oxidants. The P450 ES intermediate has not been previously reported using iodosobenzene or m-periodate as the oxygen donor. 相似文献