首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   20篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   1篇
  2016年   12篇
  2015年   8篇
  2014年   9篇
  2013年   10篇
  2012年   11篇
  2011年   13篇
  2010年   5篇
  2009年   9篇
  2008年   5篇
  2007年   10篇
  2006年   12篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   6篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   2篇
  1865年   1篇
排序方式: 共有208条查询结果,搜索用时 16 毫秒
131.
The structures of two teichoic acid fractions (TA1 and TA2) isolated from the thermophilic gram-positive bacterium Geobacillus thermoleovorans strain Fango were investigated by means of chemical and NMR spectroscopic methods. The most abundant species (TA1) exhibited a rather regular structure comprising two different repeating units of 1,3-glycerol phosphate nonstoichiometrically substituted by terminal-alpha-D-Gal p (t-alpha-D-Gal p). The second molecular species (TA2) presented a higher structural variability and t-alpha-D-Glc p and the disaccharides t-alpha-D-Glc pNAc-(1-->2)-alpha-D-Glc p and t-alpha-D-Glc pNAc-(1-->3)-alpha-D-Glc p were also present as minor substituents at O-2 of the glycerol phosphate residues. Minor substitution by alanine could also be detected.  相似文献   
132.
Thermophiles constitute a class of microorganisms able to grow at extremely elevated temperatures. Some of these species are classified as Gram-negative bacteria, because of the presence of an outer membrane in the cell envelope, which is located on the top of a thick murein layer. Unlike typical Gram-negative bacteria, the outer membranes of Thermus species are not composed of lipopolysaccharides but of peculiar glycolipids (GL), whose structures seem to be strictly involved in the adaptation to high temperatures. In this work, the complete structures of the major GL components from the cell envelope of the thermophilic bacterium Thermus thermophilus Samu-SA1 are presented. Protocols conventionally adopted for Gram-negative bacteria were used, and, for the first time, GL from Thermus were analyzed in their native form. Two GL and one phosphoglycolipid (PGL) were detected and characterized. The two GL, analyzed by nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry, possessed the same tetrasaccharide structure linked to a glycerol unit or, alternatively, to a long-chain diol. Moreover, a PGL from Thermus was characterized for the first time, in which N-glyceroyl-heptadecaneamine was present. These molecules are chemically related to other GL from thermophile bacteria, in which they play a crucial role in the adaptation of cell membranes to heat.  相似文献   
133.
Chromatin condensation and oligonucleosomal DNA fragmentation are the nuclear hallmarks of apoptosis. A proteolytic fragment of the apoptotic chromatin condensation inducer in the nucleus (Acinus), which is generated by caspase cleavage, has been implicated in mediating apoptotic chromatin condensation prior to DNA fragmentation. Acinus is also involved in mRNA splicing and a component of the apoptosis and splicing-associated protein (ASAP) complex. To study the role of Acinus for apoptotic nuclear alterations, we generated stable cell lines in which Acinus isoforms were knocked down by inducible and reversible RNA interference. We show that Acinus is not required for nuclear localization and interaction of the other ASAP subunits SAP18 and RNPS1; however, knockdown of Acinus leads to a reduction in cell growth. Most strikingly, down-regulation of Acinus did not inhibit apoptotic chromatin condensation either in intact cells or in a cell-free system. In contrast, although apoptosis proceeds rapidly, analysis of nuclear DNA from apoptotic Acinus knockdown cells shows inhibition of oligonucleosomal DNA fragmentation. Our results therefore suggest that Acinus is not involved in DNA condensation but rather point to a contribution of Acinus in internucleosomal DNA cleavage during programmed cell death.  相似文献   
134.
The acquisition of nutrients requires tight regulation to ensure optimal supply while preventing accumulation to toxic levels. Ammonium transporter/methylamine permease/rhesus (AMT/Mep/Rh) transporters are responsible for ammonium acquisition in bacteria, fungi, and plants. The ammonium transporter AMT1;1 from Arabidopsis thaliana uses a novel regulatory mechanism requiring the productive interaction between a trimer of subunits for function. Allosteric regulation is mediated by a cytosolic C-terminal trans-activation domain, which carries a conserved Thr (T460) in a critical position in the hinge region of the C terminus. When expressed in yeast, mutation of T460 leads to inactivation of the trimeric complex. This study shows that phosphorylation of T460 is triggered by ammonium in a time- and concentration-dependent manner. Neither Gln nor l-methionine sulfoximine–induced ammonium accumulation were effective in inducing phosphorylation, suggesting that roots use either the ammonium transporter itself or another extracellular sensor to measure ammonium concentrations in the rhizosphere. Phosphorylation of T460 in response to an increase in external ammonium correlates with inhibition of ammonium uptake into Arabidopsis roots. Thus, phosphorylation appears to function in a feedback loop restricting ammonium uptake. This novel autoregulatory mechanism is capable of tuning uptake capacity over a wide range of supply levels using an extracellular sensory system, potentially mediated by a transceptor (i.e., transporter and receptor).  相似文献   
135.
Phytosiderophores (PS) are strong iron chelators, produced by graminaceous plants under iron deficiency. The ability of released PS to chelate iron(III), and subsequent uptake of this chelate into roots by YS1-type transport proteins, are well-known. The mechanism of iron release from the stable chelate inside the plant cell, however, is unclear. One possibility involves the reduction of ferric PS in the presence of an iron(II) chelator via ternary complex formation. Here, the conversion of ferric PS species by ascorbate in the presence of the intracellular ligand nicotianamine (NA) has been investigated at cytosolic pH (pH 7.3), leading to the formation of a ferrous NA chelate. This reaction takes place when supplying Fe(III) as a chelate with 2'-deoxymugineic acid (DMA), mugineic acid (MA), and 3-epi-hydroxymugineic acid (epi-HMA), with the reaction rate decreasing in this order. The progress of the conversion of ferric DMA to ferrous NA was monitored in real-time by high resolution mass spectrometry (FTICR-MS), and the results are complemented by electrochemical measurements (cyclic voltammetry), which allows detecting reactive intermediates and their change with time at high sensitivity. Hence, the combined results of electrochemistry and mass spectrometry indicate an ascorbate-mediated mechanism for the iron release from ferric PS, which highlights the role of ascorbate as a simple, but effective plant reductant.  相似文献   
136.
Among higher plants graminaceous species have the unique ability to efficiently acquire iron from alkaline soils with low iron solubility by secreting phytosiderophores, which are hexadentate metal chelators with high affinity for Fe(III). Iron(III)-phytosiderophores are subsequently taken up by roots via YS1 transporters, that belong to the OPT oligopeptide transporter family. Despite its physiological importance at alkaline pH, uptake of Fe-phytosiderophores into roots of wild-type maize plants was greater at acidic pH and sensitive to the proton uncoupler CCCP. To access the mechanism of Fe-phytosiderophore acquisition, ZmYS1 was expressed in an iron uptake-defective yeast mutant and in Xenopus oocytes, where ZmYS1-dependent Fe-phytosiderophore transport was stimulated at acidic pH and sensitive to CCCP. Electrophysiological analysis in oocytes demonstrated that Fephytosiderophore transport depends on proton cotransport and on the membrane potential, which allows ZmYS1-mediated transport even at alkaline pH. We further investigated substrate specificity and observed that ZmYS1 complemented the growth defect of the zinc uptake-defective yeast mutant zap1 and transported various phytosiderophore-bound metals into oocytes, including zinc, copper, nickel, and, at a lower rate, also manganese and cadmium. Unexpectedly, ZmYS1 also transported Ni(II), Fe(II), and Fe(III) complexes with nicotianamine, a structural analog of phytosiderophores, which has been shown to act as an intracellular metal chelator in all higher plants. Our results show that ZmYS1 encodes a proton-coupled broad-range metal-phytosiderophore transporter that additionally transports Fe- and Ni-nicotianamine. These biochemical properties indicate a novel role of YS1 transporters for heavy metal homeostasis in plants.  相似文献   
137.
Regulatory levels for the transport of ammonium in plant roots   总被引:23,自引:0,他引:23  
  相似文献   
138.
A thermohalophilic strain, Samu-Sal, isolated from hot springs of the Mount Grillo (Baia, Naples, Italy) at a depth of 60 m, according to its genotypic analyses is related to Thermus genus and should be classified as a new strain of Thermus thermophilus. Strain Samu-SA1 grew using, as sole carbon source, a polysaccharide extracted from waste industrial tomato process with a yield of 3.5 g l(-1). Strain Samu-SA1 synthesized several alpha- and beta-glycosidases.  相似文献   
139.
A thermophilic aerobic microorganism, able to produce two exocellular polysaccharides (EPS1 and EPS2), was isolated from a shallow hydrothermal vent at Vulcano island (Eolian Islands, Italy). EPS1 and EPS2 were based on mannose and glucose although in a different ratio. EPS2 possessed a trisaccharide repeating unit with a manno-pyranoside configuration. New isolate phenotype was studied by physiological and morphological observations, including biochemical and antimicrobial susceptibility tests (134). Previous analyses carried out on 87 field isolates and 8 thermophilic reference bacilli displayed low phenotypic similarity level (S(SM) = 65%) with Bacillus thermodenitrificans DSM 465. Optimal growth occurs at 65 degrees C and pH 7.0. Oxidase and catalase are negative. The guanine-plus-cytosine (G+C) content of DNA is 52.7%. Genotypic investigations demonstrated the diversity of the isolate with fifteen selected thermophilic Bacillus spp. when we compared the restriction patterns of the amplified 16S rDNA. The membrane lipids are based on fatty acids mainly belonging to the iso-family.  相似文献   
140.
A novel thermophilic, aerobic, endospore-forming bacterium, designated strain PizzoT, was isolated from geothermal volcanic environment. Samples were collected from the Pizzo sopra la Fossa site at Stromboli Island (Eolian Islands, south of Italy) at the high altitude of 918 m. Cells of strain PizzoT were rod-shaped and stained Gram-positive. Growth was observed between 50 and 75 degrees C (optimum 70 degrees C) and at pH 5.0-8.0 (optimum pH 7.0). NaCl (0.4%, w/v) supported growth and among the hydrocarbons tested none induced growth. The G+C content of the DNA was 54.1 mol% and the sequence analysis of the 16S rRNA gene showed that the new isolate was phylogenetically closely related to the members of the Bacillus rRNA Group 5. DNA-DNA hybridization studies revealed a borderline similarity between the new isolate and Geobacillus thermoleovorans DSM 5366T (69.8%) and Geobacillus kaustophilus DSM 7263T (63.4%). On the basis of phylogenetic analysis and physiological traits of the isolate, it should be described as a new member of the Geobacillus thermoleovorans species and it is proposed that strain PizzoT can be classified as Geobacillus thermoleovorans subsp. stromboliensis, subsp. nov. (ATCC BAA-979T; DSM 15393T).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号