首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7745篇
  免费   604篇
  国内免费   2篇
  8351篇
  2023年   58篇
  2022年   110篇
  2021年   229篇
  2020年   143篇
  2019年   162篇
  2018年   183篇
  2017年   158篇
  2016年   266篇
  2015年   438篇
  2014年   471篇
  2013年   562篇
  2012年   698篇
  2011年   668篇
  2010年   407篇
  2009年   375篇
  2008年   520篇
  2007年   439篇
  2006年   430篇
  2005年   366篇
  2004年   321篇
  2003年   262篇
  2002年   272篇
  2001年   60篇
  2000年   60篇
  1999年   70篇
  1998年   49篇
  1997年   42篇
  1996年   33篇
  1995年   41篇
  1994年   32篇
  1993年   17篇
  1992年   48篇
  1991年   36篇
  1990年   28篇
  1989年   30篇
  1988年   20篇
  1987年   20篇
  1986年   24篇
  1985年   26篇
  1984年   14篇
  1983年   11篇
  1982年   14篇
  1981年   14篇
  1980年   16篇
  1978年   10篇
  1977年   13篇
  1976年   9篇
  1973年   11篇
  1972年   7篇
  1968年   7篇
排序方式: 共有8351条查询结果,搜索用时 0 毫秒
71.
Ecosystems - A correction to this paper has been published: https://doi.org/10.1007/s10021-021-00614-y  相似文献   
72.
Journal of Physiology and Biochemistry - Alendronate, a bisphosphonate used to prevent osteoporosis, stimulates osteogenesis but impairs adipogenesis. Different clinical trials suggest that the...  相似文献   
73.
Constrained to develop within the seed, the plant embryo must adapt its shape and size to fit the space available. Here, we demonstrate how this adjustment shapes metabolism of photosynthetic embryo. Noninvasive NMR-based imaging of the developing oilseed rape (Brassica napus) seed illustrates that, following embryo bending, gradients in lipid concentration became established. These were correlated with the local photosynthetic electron transport rate and the accumulation of storage products. Experimentally induced changes in embryo morphology and/or light supply altered these gradients and were accompanied by alterations in both proteome and metabolome. Tissue-specific metabolic models predicted that the outer cotyledon and hypocotyl/radicle generate the bulk of plastidic reductant/ATP via photosynthesis, while the inner cotyledon, being enclosed by the outer cotyledon, is forced to grow essentially heterotrophically. Under field-relevant high-light conditions, major contribution of the ribulose-1,5-bisphosphate carboxylase/oxygenase–bypass to seed storage metabolism is predicted for the outer cotyledon and the hypocotyl/radicle only. Differences between in vitro– versus in planta–grown embryos suggest that metabolic heterogeneity of embryo is not observable by in vitro approaches. We conclude that in vivo metabolic fluxes are locally regulated and connected to seed architecture, driving the embryo toward an efficient use of available light and space.  相似文献   
74.
Despite the strong rationale for combining cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with peritoneal carcinomatosis, thermotolerance and chemoresistance might result from heat shock protein overexpression. The aim of the present study was thus to determine whether the heat shock protein 27 (Hsp27), a potential factor in resistance to treatment, could have a higher level in serum from patients under this combined therapy. Patients receiving CRS plus HIPEC for peritoneal carcinomatosis (group 1), patients with cancer or a history of cancer undergoing abdominal surgery (group 2), and patients without malignancies undergoing abdominal surgery (group 3) were included. Hsp27 serum levels were determined before and at different times following CRS and HIPEC using enzyme-linked immunosorbent assay. In group 1 (n = 25), the high Hsp27 levels, observed at the end of surgery compared with before (p < 0.0001), decreased during HIPEC, but remained significantly higher than before surgery (p < 0.0005). In groups 2 (n = 11) and 3 (n = 15), surgery did not significantly increase Hsp27 levels. A targeted molecular strategy, inhibiting Hsp27 expression in tumor tissue, could significantly reduce resistance to the combined CRS plus HIPEC treatment. This approach should be further assessed in a clinical phase I trial.  相似文献   
75.
ERCC1 (excision repair cross-complementation group 1) plays essential roles in the removal of DNA intrastrand crosslinks by nucleotide excision repair, and that of DNA interstrand crosslinks by the Fanconi anemia (FA) pathway and homology-directed repair processes (HDR). The function of ERCC1 thus impacts on the DNA damage response (DDR), particularly in anticancer therapy when DNA damaging agents are employed. ERCC1 expression has been proposed as a predictive biomarker of the response to platinum-based therapy. However, the assessment of ERCC1 expression in clinical samples is complicated by the existence of 4 functionally distinct protein isoforms, which differently impact on DDR. Here, we explored the functional competence of each ERCC1 protein isoform and obtained evidence that the 202 isoform is the sole one endowed with ERCC1 activity in DNA repair pathways. The ERCC1 isoform 202 interacts with RPA, XPA, and XPF, and XPF stability requires expression of the ERCC1 202 isoform (but none of the 3 others). ERCC1-deficient non-small cell lung cancer cells show abnormal mitosis, a phenotype reminiscent of the FA phenotype that can be rescued by isoform 202 only. Finally, we could not observe any dominant-negative interaction between ERCC1 isoforms. These data suggest that the selective assessment of the ERCC1 isoform 202 in clinical samples should accurately reflect the DDR-related activity of the gene and hence constitute a useful biomarker for customizing anticancer therapies.  相似文献   
76.
Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell–mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1+ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases.  相似文献   
77.
Wildlife is exposed to natural (e.g., food availability and quality, parasitism) and anthropogenic stressors (e.g., habitat fragmentation, toxicants). Individual variables (e.g., age, gender) affect behaviour and physiology of animals. Together, these parameters can create both great inter-individual variations in health indicators and interpretation difficulties. We investigated the relevance of body condition and somatic indices (liver, kidneys) as indicators of health status in wood mice (Apodemus sylvaticus, n = 560) captured along a metal pollution gradient in four landscape types (30 sampling squares 500-m sided). The indices were calculated using a recently proposed standard major axis regression instead of an ordinary least square regression. After considering age and gender for the body condition index, no landscape type influence was detected in the indices. However, important index variability was observed between sampling squares; this effect was included as a random effect in linear models. After integrating all individual and environmental variables that may affect the indices, cadmium (Cd) concentrations in both the liver and kidneys were negatively related to body condition and liver indices only for individuals from highly contaminated sites. Lead in the liver was negatively related to the liver index, and Cd in kidneys was positively linked to the kidney index, potentially suggesting metal-induced stress. However, interpretation of these indices as a wildlife ecotoxicology tool should be performed with caution due to the sensitivity of potentially confounding variables (e.g., individual factors and environmental parameters).  相似文献   
78.
Neural crest cells (NCC) are a transient and multipotent cell population that originates from the dorsal neural tube and migrates extensively throughout the developing vertebrate embryo. In addition to providing peripheral glia and neurons, NCC generate melanocytes as well as most of the cranio-facial skeleton. NCC migration and differentiation is controlled by a combination of their axial origin along the neural tube and their exposure to regionally distinct extracellular cues. Such contribution of extracellular ligands is especially evident during the formation of the enteric nervous system (ENS), a complex interconnected network of neural ganglia that locally controls (among other things) gut muscle movement and intestinal motility. Most of the ENS is derived from a small initial pool of NCC that undertake a long journey in order to colonize - in a rostral to caudal fashion - the entire length of the prospective gut. Among several signaling pathways known to influence enteric NCC colonization, GDNF/RET signaling is recognized as the most important. Indeed, spatiotemporally controlled secretion of the RET ligand GDNF by the gut mesenchyme is chiefly responsible for the attraction and guidance of RET-expressing enteric NCC to and within the embryonic gut. Here, we describe an ex vivo cell migration assay, making use of a transgenic mouse line possessing fluorescently labeled NCC, which allows precise quantification of enteric NCC migration potential in the presence of various growth factors, including GDNF.  相似文献   
79.
Armadillidium vulgare is a terrestrial isopod (Crustacea, Oniscidea) which harbors Wolbachia bacterial endosymbionts. A. vulgare is the major model for the study of Wolbachia-mediated feminization of genetic males in crustaceans. As a consequence of their impact on host sex determination mechanisms, Wolbachia endosymbionts are thought to significantly influence A. vulgare evolution on various grounds, including population genetic structure, diversity and reproduction strategies. To provide molecular tools for examining these questions, we isolated microsatellite loci through 454 pyrosequencing of a repeat-enriched A. vulgare genomic library. We selected 14 markers and developed three polymorphic microsatellite multiplex kits. We tested the kits on two A. vulgare natural populations and found high genetic variation, thereby making it possible to investigate the impact of Wolbachia endosymbionts on A. vulgare nuclear variation at unprecedented resolution. In addition, we tested the transferability of these kits by cross-species amplification in five other terrestrial isopod species harboring Wolbachia endosymbionts. The microsatellite loci showed good transferability in particular in Armadillidium nasatum and Chaetophiloscia elongata, for which these markers represent promising tools for future genetic studies.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号