首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7320篇
  免费   572篇
  国内免费   1篇
  2023年   49篇
  2022年   96篇
  2021年   222篇
  2020年   143篇
  2019年   155篇
  2018年   172篇
  2017年   152篇
  2016年   253篇
  2015年   421篇
  2014年   446篇
  2013年   529篇
  2012年   678篇
  2011年   636篇
  2010年   392篇
  2009年   359篇
  2008年   501篇
  2007年   425篇
  2006年   413篇
  2005年   353篇
  2004年   313篇
  2003年   246篇
  2002年   260篇
  2001年   47篇
  2000年   42篇
  1999年   52篇
  1998年   43篇
  1997年   36篇
  1996年   32篇
  1995年   34篇
  1994年   28篇
  1993年   17篇
  1992年   40篇
  1991年   29篇
  1990年   21篇
  1989年   29篇
  1988年   14篇
  1987年   19篇
  1986年   22篇
  1985年   22篇
  1984年   10篇
  1983年   10篇
  1982年   13篇
  1981年   13篇
  1980年   15篇
  1979年   7篇
  1978年   9篇
  1977年   12篇
  1976年   8篇
  1975年   7篇
  1973年   9篇
排序方式: 共有7893条查询结果,搜索用时 328 毫秒
111.
112.
113.
Recombination systems represent a major breakthrough in the field of genetic model engineering. The Flp recombinases (Flp, Flpe, and Flpo) bind and cleave DNA Frt sites. We created a transgenic mouse strain ([Fsp1‐Flpo]) expressing the Flpo recombinase in fibroblasts. This strain was obtained by random insertion inside mouse zygotes after pronuclear injection. Flpo expression was placed under the control of the promoter of Fsp1 (fibroblast‐specific protein 1) gene, whose expression starts after gastrulation at Day 8.5 in cells of mesenchymal origin. We verified the correct expression and function of the Flpo enzyme by several ex vivo and in vivo approaches. The [Fsp1‐Flpo] strain represents a genuine tool to further target the recombination of transgenes with Frt sites specifically in cells of mesenchymal origin or with a fibroblastic phenotype.  相似文献   
114.
Aging is a negative regulator of general homeostasis, tissue function, and regeneration. Changes in organismal energy levels and physiology, through systemic manipulations such as calorie restriction and young blood infusion, can regenerate tissue activity and increase lifespan in aged mice. However, whether these two systemic manipulations could be linked has never been investigated. Here, we report that systemic GDF11 triggers a calorie restriction‐like phenotype without affecting appetite or GDF15 levels in the blood, restores the insulin/IGF‐1 signaling pathway, and stimulates adiponectin secretion from white adipose tissue by direct action on adipocytes, while repairing neurogenesis in the aged brain. These findings suggest that GDF11 has a pleiotropic effect on an organismal level and that it could be a linking mechanism of rejuvenation between heterochronic parabiosis and calorie restriction. As such, GDF11 could be considered as an important therapeutic candidate for age‐related neurodegenerative and metabolic disorders.  相似文献   
115.
Organic microfossils preserved in three dimensions in transparent mineral matrices such as cherts/quartzites, phosphates, or carbonates are best studied in petrographic thin sections. Moreover, microscale mass spectrometry techniques commonly require flat, polished surfaces to minimize analytical bias. However, contamination by epoxy resin in traditional petrographic sections is problematic for the geochemical study of the kerogen in these microfossils and more generally for the in situ analysis of fossil organic matter. Here, we show that epoxy contamination has a molecular signature that is difficult to distinguish from kerogen with time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). This contamination appears pervasive in organic microstructures embedded in micro‐ to nano‐crystalline carbonate. To solve this problem, a new semi‐thin section preparation protocol without resin medium was developed for micro‐ to nanoscale in situ investigation of insoluble organic matter. We show that these sections are suited for microscopic observation of Proterozoic microfossils in cherts. ToF‐SIMS reveals that these sections are free of pollution after final removal of a <10 nm layer of contamination using low‐dose ion sputtering. ToF‐SIMS maps of fragments from aliphatic and aromatic molecules and organic sulfur are correlated with the spatial distribution of organic microlaminae in a Jurassic stromatolite. Hydrocarbon‐derived ions also appeared correlated with kerogenous microstructures in Archean cherts. These developments in analytical procedures should help future investigations of organic matter and in particular, microfossils, by allowing the spatial correlation of microscopy, spectroscopy, precise isotopic microanalyses, and novel molecular microanalyses such as ToF‐SIMS.  相似文献   
116.
Acarbose blocks the digestion of complex carbohydrates, and the NIA Intervention Testing Program (ITP) found that it improved survival when fed to mice. Yet, we do not know if lifespan extension was caused by its effect on metabolism with regard to the soma or cancer suppression. Cancer caused death for ~80% of ITP mice. The ITP found rapamycin, an inhibitor to the pro‐growth mTORC1 (mechanistic target of rapamycin complex 1) pathway, improved survival and it suppressed tumors in Apc+/Min mice providing a plausible rationale to ask if acarbose had a similar effect. Apc+/Min is a mouse model prone to intestinal polyposis and a mimic of familial adenomatous polyposis in people. Polyp‐associated anemia contributed to their death. To address this knowledge gap, we fed two doses of acarbose to Apc+/Min mice. Acarbose improved median survival at both doses. A cross‐sectional analysis was performed next. At both doses, ACA fed mice exhibited reduced intestinal crypt depth, weight loss despite increased food consumption and reduced postprandial blood glucose and plasma insulin, indicative of improved insulin sensitivity. Dose‐independent and dose‐dependent compensatory liver responses were observed for AMPK and mTORC1 activities, respectively. Only mice fed the high dose diet exhibited reductions in tumor number with higher hematocrits. Because low‐dose acarbose improved lifespan but failed to reduced tumors, its effects seem to be independent of cancer. These data implicate the importance of improved carbohydrate metabolism on survival.  相似文献   
117.
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.  相似文献   
118.
The Southern Ocean (SO) is among the regions on Earth that are undergoing regionally the fastest environmental changes. The unique ecological features of its marine life make it particularly vulnerable to the multiple effects of climate change. A network of Marine Protected Areas (MPAs) has started to be implemented in the SO to protect marine ecosystems. However, considering future predictions of the Intergovernmental Panel on Climate Change (IPCC), the relevance of current, static, MPAs may be questioned under future scenarios. In this context, the ecoregionalization approach can prove promising in identifying well‐delimited regions of common species composition and environmental settings. These so‐called ecoregions are expected to show similar biotic responses to environmental changes and can be used to define priority areas for the designation of new MPAs and the update of their current delimitation. In the present work, a benthic ecoregionalization of the entire SO is proposed for the first time based on abiotic environmental parameters and the distribution of echinoid fauna, a diversified and common member of Antarctic benthic ecosystems. A novel two‐step approach was developed combining species distribution modeling with Random Forest and Gaussian Mixture modeling from species probabilities to define current ecoregions and predict future ecoregions under IPCC scenarios RCP 4.5 and 8.5. The ecological representativity of current and proposed MPAs of the SO is discussed with regard to the modeled benthic ecoregions. In all, 12 benthic ecoregions were determined under present conditions, they are representative of major biogeographic patterns already described. Our results show that the most dramatic changes can be expected along the Antarctic Peninsula, in East Antarctica and the sub‐Antarctic islands under both IPCC scenarios. Our results advocate for a dynamic definition of MPAs, they also argue for improving the representativity of Antarctic ecoregions in proposed MPAs and support current proposals of Conservation of Antarctic Marine Living Resources for the creation of Antarctic MPAs.  相似文献   
119.
Global climate change has already caused bottom temperatures of coastal marine ecosystems to increase worldwide. These ecosystems face many pressures, of which fishing is one of the most important. While consequences of global warming on commercial species are studied extensively, the importance of the increase in bottom temperature and of variation in fishing effort is more rarely considered together in these exploited ecosystems. Using a 17 year time series from an international bottom trawl survey, we investigated covariations of an entire demersal ecosystem (101 taxa) with the environment in the Celtic Sea. Our results showed that over the past two decades, biotic communities in the Celtic Sea were likely controlled more by environmental variables than fisheries, probably due to its long history of exploitation. At the scale of the entire zone, relations between taxa and the environment remained stable over the years, but at a local scale, in the center of the Celtic Sea, dynamics were probably driven by interannual variation in temperature. Fishing was an important factor structuring species assemblages at the beginning of the time series (2000) but decreased in importance after 2009. This was most likely caused by a change in spatial distribution of fishing effort, following a change in targeted taxa from nephrops to deeper water anglerfish that did not covary with fishing effort. Increasing bottom temperatures could induce additional changes in the coming years, notably in the cold‐water commercial species cod, hake, nephrops, and American plaice. We showed that analyzing covariation is an effective way to screen a large number of taxa and highlight those that may be most susceptible to future simultaneous increases in temperature and changes in exploitation pattern by fisheries. This information can be particularly relevant for ecosystem assessments.  相似文献   
120.
Filarial parasitic nematodes (Filarioidea) cause substantial disease burden to humans and animals around the world. Recently there has been a coordinated global effort to generate, annotate, and curate genomic data from nematode species of medical and veterinary importance. This has resulted in two chromosome-level assemblies (Brugia malayi and Onchocerca volvulus) and 11 additional draft genomes from Filarioidea. These reference assemblies facilitate comparative genomics to explore basic helminth biology and prioritize new drug and vaccine targets. While the continual improvement of genome contiguity and completeness advances these goals, experimental functional annotation of genes is often hindered by poor gene models. Short-read RNA sequencing data and expressed sequence tags, in cooperation with ab initio prediction algorithms, are employed for gene prediction, but these can result in missing clade-specific genes, fragmented models, imperfect mapping of gene ends, and lack of isoform resolution. Long-read RNA sequencing can overcome these drawbacks and greatly improve gene model quality. Here, we present Iso-Seq data for B. malayi and Dirofilaria immitis, etiological agents of lymphatic filariasis and canine heartworm disease, respectively. These data cover approximately half of the known coding genomes and substantially improve gene models by extending untranslated regions, cataloging novel splice junctions from novel isoforms, and correcting mispredicted junctions. Furthermore, we validated computationally predicted operons, manually curated new operons, and merged fragmented gene models. We carried out analyses of poly(A) tails in both species, leading to the identification of non-canonical poly(A) signals. Finally, we prioritized and assessed known and putative anthelmintic targets, correcting or validating gene models for molecular cloning and target-based anthelmintic screening efforts. Overall, these data significantly improve the catalog of gene models for two important parasites, and they demonstrate how long-read RNA sequencing should be prioritized for ongoing improvement of parasitic nematode genome assemblies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号