首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8095篇
  免费   661篇
  国内免费   1篇
  2023年   57篇
  2022年   109篇
  2021年   230篇
  2020年   147篇
  2019年   158篇
  2018年   183篇
  2017年   160篇
  2016年   260篇
  2015年   431篇
  2014年   468篇
  2013年   553篇
  2012年   719篇
  2011年   671篇
  2010年   425篇
  2009年   379篇
  2008年   537篇
  2007年   450篇
  2006年   447篇
  2005年   369篇
  2004年   328篇
  2003年   276篇
  2002年   284篇
  2001年   76篇
  2000年   75篇
  1999年   66篇
  1998年   62篇
  1997年   46篇
  1996年   51篇
  1995年   48篇
  1994年   39篇
  1993年   22篇
  1992年   58篇
  1991年   38篇
  1990年   36篇
  1989年   39篇
  1988年   27篇
  1987年   35篇
  1986年   33篇
  1985年   41篇
  1984年   20篇
  1983年   27篇
  1982年   26篇
  1981年   21篇
  1980年   21篇
  1977年   21篇
  1976年   16篇
  1975年   19篇
  1974年   13篇
  1973年   24篇
  1972年   19篇
排序方式: 共有8757条查询结果,搜索用时 15 毫秒
911.
912.
913.
914.
Postconditioning, i.e., brief intermittent episodes of myocardial ischemia-reperfusion performed at the onset of reperfusion, reduces infarct size after prolonged ischemia. Our goal was to determine whether postconditioning is protective against myocardial stunning. Accordingly, conscious chronically instrumented dogs (sonomicrometry, coronary balloon occluder) were subjected to a control sequence (10 min coronary artery occlusion, CAO, followed by coronary artery reperfusion, CAR) and a week apart to postconditioning with four cycles of brief CAR and CAO performed at completion of the 10 min CAO. Three postconditioning protocols were investigated, i.e., 15 s CAR/15 s CAO (n=5), 30 s CAR/30 s CAO (n=7), and 1 min CAR/1 min CAO (n=6). Left ventricular wall thickening was abolished during CAO and similarly reduced during subsequent stunning in control and postconditioning sequences (e.g., at 1 h CAR, 33+/-4 vs. 34+/-4%, 30+/-4 vs. 30+/-4%, and 33+/-4 vs. 32+/-4% for 15 s postconditioning, 30 s postconditioning, and 1 min postconditioning vs. corresponding control, respectively). We confirmed this result in anesthetized rabbits by demonstrating that shortening of left ventricular segment length was similarly depressed after 10 min CAO in control and postconditioning sequences (4 cycles of 30 s CAR/30 s CAO). In additional rabbits, the same postconditioning protocol significantly reduced infarct size after 30 min CAO and 3 h CAR (39+/-7%, n=6 vs. 56+/-4%, n=7 of the area at risk in postconditioning vs. control, respectively). Thus, contrasting to its beneficial effects on myocardial infarction, postconditioning does not protect against myocardial stunning in dogs and rabbits. Conversely, additional episodes of ischemia-reperfusion with postconditioning do not worsen myocardial stunning.  相似文献   
915.
Cardiac resynchronization therapy (CRT) decreases muscle sympathetic nerve activity (MSNA) in patients with severe congestive heart failure (CHF) and cardiac asynchrony. Whether this affects equally patients who clinically respond or not to CRT is unknown. We tested the hypothesis that the favorable effects of CRT on MSNA disappear on CRT interruption only in those who respond to CRT. Twenty-three consecutive CHF patients participated in the study, among whom 16 presented a symptomatic improvement by one or more New York Heart Association (NYHA) functional classes 15 +/- 5 mo after CRT (responders), and seven had not improved after 12 +/- 4 mo of CRT (nonresponders). MSNA and echocardiographic recordings were obtained in random order during atrio-right ventricular pacing (ARV), without stimulation in patients who were not pacemaker dependent (OFF, n = 17), and during atrio-biventricular pacing (BIV). Responders had a longer 6-min walking distance, a lower NYHA class and brain natriuretic peptide levels, and a better quality of life than did nonresponders (all P < 0.05). MSNA increased by 25 +/- 7% in the responders, whereas it remained unchanged in the nonresponders, when shifting from the BIV mode to a nonsynchronous condition (ARV and OFF modes) (P < 0.01). Cardiac output decreased by 0.7 +/- 0.2 l/min in the responders but did not change when shifting from the BIV mode to the nonsynchronous pacing mode in the nonresponders (P < 0.01). In conclusion, reversible sympathoinhibition is a marker of the clinical response to CRT.  相似文献   
916.
Peripheral chemoreflex inhibition with hyperoxia decreases sympathetic nerve traffic to muscle circulation [muscle sympathetic nerve activity (MSNA)]. Hyperoxia also decreases lactate production during exercise. However, hyperoxia markedly increases the activation of sensory endings in skeletal muscle in animal studies. We tested the hypothesis that hyperoxia increases the MSNA and mean blood pressure (MBP) responses to isometric exercise. The effects of breathing 21% and 100% oxygen at rest and during isometric handgrip at 30% of maximal voluntary contraction on MSNA, heart rate (HR), MBP, blood lactate (BL), and arterial O2 saturation (SaO2) were determined in 12 healthy men. The isometric handgrips were followed by 3 min of postexercise circulatory arrest (PE-CA) to allow metaboreflex activation in the absence of other reflex mechanisms. Hyperoxia lowered resting MSNA, HR, MBP, and BL but increased Sa(O2) compared with normoxia (all P < 0.05). MSNA and MBP increased more when exercise was performed in hyperoxia than in normoxia (MSNA: hyperoxic exercise, 255 +/- 100% vs. normoxic exercise, 211 +/- 80%, P = 0.04; and MBP: hyperoxic exercise, 33 +/- 9 mmHg vs. normoxic exercise, 26 +/- 10 mmHg, P = 0.03). During PE-CA, MSNA and MBP remained elevated (both P < 0.05) and to a larger extent during hyperoxia than normoxia (P < 0.05). Hyperoxia enhances the sympathetic and blood pressure (BP) reactivity to metaboreflex activation. This is due to an increase in metaboreflex sensitivity by hyperoxia that overrules the sympathoinhibitory and BP lowering effects of chemoreflex inhibition. This occurs despite a reduced lactic acid production.  相似文献   
917.
918.
Butyrivibrio fibrisolvens is the most active bacterial species in the biohydrogenation of polyunsaturated fatty acids (PUFA) in the rumen. It needs to remove the unsaturated bonds in order to detoxify the PUFA to enable the growth of the bacterium. Here, we investigated the response of cell membrane-associated proteins in B. fibrisolvens to growth in the presence of PUFA. Numerous changes were observed in the cell membrane-associated proteome. One of the main modifications occurring when the 18:2 fatty acids, linoleic acid and conjugated linoleic acid, were added, was an increased expression of the molecular chaperone GroEL.  相似文献   
919.
Following up on recent observations in patients with nasal polyposis (NP), the present study aimed to investigate whether a mechanical obstruction of the anterior olfactory cleft (OC) would produce differential effects on orthonasal and retronasal olfactory functions. To this end, we studied 33 healthy subjects in a randomized trial. Sponges with high content of saline were either placed in the OC or on the respiratory epithelium, such that this was blinded to both subject and observer. The results indicated that orthonasal (P = 0.04) but not retronasal (P = 0.15) olfactory identification ability was lower when the OC was blocked. This confirms the idea that differences between orthonasal and retronasal olfactory functions, as observed in NP patients, are, at least to some degree, due to mechanical obstruction of the anterior portion of the OC. The present data also suggest that mechanical obstruction is a means to induce reversible hyposmia void of side effects which can be performed in a blinded fashion. This might become a valuable model of hyposmia for future investigations.  相似文献   
920.
Tracking the opioid receptors on the way of desensitization   总被引:1,自引:0,他引:1  
Opioid receptors belong to the super family of G-protein coupled receptors (GPCRs) and are the targets of numerous opioid analgesic drugs. Prolonged use of these drugs results in a reduction of their effectiveness in pain relief also called tolerance, a phenomenon well known by physicians. Opioid receptor desensitization is thought to play a major role in tolerance and a lot of work has been dedicated to elucidate the molecular basis of desensitization. As described for most of GPCRs, opioid receptor desensitization involves their phosphorylation by kinases and their uncoupling from G-proteins realized by arrestins. More recently, opioid receptor trafficking was shown to contribute to desensitization. In this review, our knowledge on the molecular mechanisms of desensitization and recent progress on the role of opioid receptor internalization, recycling or degradation in desensitization will be reported. A better understanding of these regulatory mechanisms would be helpful to develop new analgesic drugs or new strategies for pain treatment by limiting opioid receptor desensitization and tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号