首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7401篇
  免费   578篇
  国内免费   1篇
  2023年   49篇
  2022年   70篇
  2021年   222篇
  2020年   141篇
  2019年   154篇
  2018年   174篇
  2017年   155篇
  2016年   256篇
  2015年   430篇
  2014年   451篇
  2013年   528篇
  2012年   678篇
  2011年   639篇
  2010年   395篇
  2009年   363篇
  2008年   501篇
  2007年   426篇
  2006年   415篇
  2005年   352篇
  2004年   313篇
  2003年   245篇
  2002年   262篇
  2001年   50篇
  2000年   42篇
  1999年   53篇
  1998年   53篇
  1997年   43篇
  1996年   39篇
  1995年   39篇
  1994年   29篇
  1993年   20篇
  1992年   41篇
  1991年   29篇
  1990年   26篇
  1989年   29篇
  1988年   17篇
  1987年   19篇
  1986年   21篇
  1985年   26篇
  1984年   12篇
  1983年   13篇
  1982年   16篇
  1981年   12篇
  1980年   15篇
  1979年   9篇
  1978年   11篇
  1977年   19篇
  1976年   14篇
  1975年   10篇
  1973年   10篇
排序方式: 共有7980条查询结果,搜索用时 187 毫秒
151.
Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.  相似文献   
152.
Neural crest cells (NCC) are a transient and multipotent cell population that originates from the dorsal neural tube and migrates extensively throughout the developing vertebrate embryo. In addition to providing peripheral glia and neurons, NCC generate melanocytes as well as most of the cranio-facial skeleton. NCC migration and differentiation is controlled by a combination of their axial origin along the neural tube and their exposure to regionally distinct extracellular cues. Such contribution of extracellular ligands is especially evident during the formation of the enteric nervous system (ENS), a complex interconnected network of neural ganglia that locally controls (among other things) gut muscle movement and intestinal motility. Most of the ENS is derived from a small initial pool of NCC that undertake a long journey in order to colonize - in a rostral to caudal fashion - the entire length of the prospective gut. Among several signaling pathways known to influence enteric NCC colonization, GDNF/RET signaling is recognized as the most important. Indeed, spatiotemporally controlled secretion of the RET ligand GDNF by the gut mesenchyme is chiefly responsible for the attraction and guidance of RET-expressing enteric NCC to and within the embryonic gut. Here, we describe an ex vivo cell migration assay, making use of a transgenic mouse line possessing fluorescently labeled NCC, which allows precise quantification of enteric NCC migration potential in the presence of various growth factors, including GDNF.  相似文献   
153.
Type 1 diabetes mellitus (T1DM) usually begins in childhood and adolescence and causes lifelong damage to several major organs including the brain. Despite increasing evidence of T1DM-induced structural deficits in cortical regions implicated in higher cognitive and emotional functions, little is known whether and how the structural connectivity between these regions is altered in the T1DM brain. Using inter-regional covariance of cortical thickness measurements from high-resolution T1-weighted magnetic resonance data, we examined the topological organizations of cortical structural networks in 81 T1DM patients and 38 healthy subjects. We found a relative absence of hierarchically high-level hubs in the prefrontal lobe of T1DM patients, which suggests ineffective top-down control of the prefrontal cortex in T1DM. Furthermore, inter-network connections between the strategic/executive control system and systems subserving other cortical functions including language and mnemonic/emotional processing were also less integrated in T1DM patients than in healthy individuals. The current results provide structural evidence for T1DM-related dysfunctional cortical organization, which specifically underlie the top-down cognitive control of language, memory, and emotion.  相似文献   
154.
We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time  = 122.43 hours ±17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (−13±17% and −10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (−24±13% and −26±19%, P<0.01) with alteration of the central activation ratio (−24±24% and −28±34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: −18±18% and PF: −20±15%, P<0.01) and peak twitch (KE: −33±12%, P<0.001 and PF: −19±14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·1), lactate dehydrogenase (1145±511 UI·L−1), C-Reactive Protein (13.1±7.5 mg·L−1) and myoglobin (449.3±338.2 µg·L−1) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.  相似文献   
155.
Armadillidium vulgare is a terrestrial isopod (Crustacea, Oniscidea) which harbors Wolbachia bacterial endosymbionts. A. vulgare is the major model for the study of Wolbachia-mediated feminization of genetic males in crustaceans. As a consequence of their impact on host sex determination mechanisms, Wolbachia endosymbionts are thought to significantly influence A. vulgare evolution on various grounds, including population genetic structure, diversity and reproduction strategies. To provide molecular tools for examining these questions, we isolated microsatellite loci through 454 pyrosequencing of a repeat-enriched A. vulgare genomic library. We selected 14 markers and developed three polymorphic microsatellite multiplex kits. We tested the kits on two A. vulgare natural populations and found high genetic variation, thereby making it possible to investigate the impact of Wolbachia endosymbionts on A. vulgare nuclear variation at unprecedented resolution. In addition, we tested the transferability of these kits by cross-species amplification in five other terrestrial isopod species harboring Wolbachia endosymbionts. The microsatellite loci showed good transferability in particular in Armadillidium nasatum and Chaetophiloscia elongata, for which these markers represent promising tools for future genetic studies.  相似文献   
156.
157.
Wildlife populations are subjected to increasing pressure linked to human activities, which introduce multiple stressors. Recently, in addition to direct effects, it has been shown that indirect (non-lethal) effects of predation risk are predominant in many populations. Predation risk is often structured in space and time, generating a heterogeneous “landscape of fear” within which animals can minimize risks by modifying their habitat use. Furthermore, for ungulates, resource quality seems to be positively correlated with human-related sources of risk. We studied the trade-off between access to resources of high-quality and risk-taking by contrasting habitat use of roe deer during daytime with that during nighttime for 94 roe deer in a hunted population. Our first hypothesis was that roe deer should avoid human disturbance by modifying their habitat use during daytime compared to nighttime. Our results supported this, as roe deer mainly used open fields during nighttime, but used more forested habitats during daytime, when human disturbance is higher. Moreover, we found that diel patterns in habitat use were influenced by hunting disturbance. Indeed, the roe deer decreased their use of high-crops during daytime, an important source of cover and food, during the hunting season. The proximity of roads and dwellings also affected habitat use, since roe deer used open fields during daytime to a greater extent when the distance to these sources of disturbance was higher. Hence, our results suggest that roe deer resolve the trade-off between the acquisition of high-quality resources and risk avoidance by modifying their habitat use between day and night.  相似文献   
158.
We studied for the first time the mammary gland morphogenesis and its hormonal modulation by immunolocalizing estradiol, progesterone and prolactin receptors (ER, PR and PRLR) in adult females of Lagostomus maximus, a caviomorph rodent which shows a pseudo-ovulatory process at mid-gestation. Mammary ductal system of non-pregnant females lacks expression of both ERα and ERβ. Yet throughout pregnancy, ERα and ERβ levels increase as well as the expression of PR. These increments are concomitant with ductal branching and alveolar differentiation. Even though mammary gland morphology is quite similar to that described for other rodents, alveolar proliferation and differentiation are accelerated towards the second half of pregnancy, once pseudo-ovulation had occurred. Moreover, this exponential growth correlates with an increment of both progesterone and estradiol serum-induced pseudo-ovulation. As expected, PR and PRLR are strongly expressed in the alveolar epithelium during pregnancy and lactation. Strikingly, PRLR is also present in ductal epithelia of cycling glands suggesting that prolactin function may not be restricted to its trophic effect on mammary glands of pregnant and lactating females, but it also regulates other physiological processes in mammary glands of non-pregnant animals. In conclusion, this report suggests that pseudo-ovulation at mid-gestation may be associated to L. maximus mammary gland growth and differentiation. The rise in P and E2-induced pseudo-ovulation as well as the increased expression of their receptors, all events that correlate with the development of a more elaborated and differentiated ductal network, pinpoint a possible relation between this peculiar physiological event and mammary gland morphogenesis.  相似文献   
159.
Highlights? Canonical ER stress pathways are activated in central neurons during hypoxia/ischemia ? The ER stress endoribonuclease IRE1α degrades the neurovascular guidance cue netrin-1 ? Neuronal-derived netrin-1 activates a reparative proangiogenic program in microglial cells ? Neuronal ER stress prevents reparative angiogenesis in the ischemic neural retina  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号