首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9807篇
  免费   736篇
  国内免费   5篇
  10548篇
  2023年   61篇
  2022年   121篇
  2021年   256篇
  2020年   164篇
  2019年   172篇
  2018年   199篇
  2017年   174篇
  2016年   292篇
  2015年   481篇
  2014年   547篇
  2013年   647篇
  2012年   828篇
  2011年   777篇
  2010年   488篇
  2009年   457篇
  2008年   640篇
  2007年   565篇
  2006年   529篇
  2005年   470篇
  2004年   430篇
  2003年   348篇
  2002年   350篇
  2001年   69篇
  2000年   72篇
  1999年   85篇
  1998年   83篇
  1997年   59篇
  1996年   65篇
  1995年   60篇
  1994年   50篇
  1993年   50篇
  1992年   75篇
  1991年   58篇
  1990年   45篇
  1989年   54篇
  1988年   41篇
  1987年   36篇
  1986年   40篇
  1985年   45篇
  1984年   43篇
  1983年   27篇
  1982年   30篇
  1981年   37篇
  1980年   33篇
  1978年   30篇
  1977年   30篇
  1976年   27篇
  1975年   29篇
  1974年   22篇
  1973年   23篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
With about 800 Recent species, ‘miters’ are a widely distributed group of tropical and subtropical gastropods that are most diverse in the Indo‐West Pacific. They include the two families Mitridae and Costellariidae, similar in shell morphology and traditionally treated as close relatives. Some genera of deep‐water Ptychatractidae and Volutomitridae are close to miters in shell morphology, and the term ‘mitriform gastropods’ has been introduced to refer to Mitridae, Costellariidae, and this assortment of convergent forms. The present study aimed at the reconstruction of phylogenetic relationships of mitriform gastropods based on representative taxon sampling. Four genetic markers [cytochrome c oxidase subunit I (COI), 16S and 12S rRNA mitochondrial genes, and H3 (Histone 3) nuclear gene] were sequenced for over 90 species in 20 genera, and the molecular data set was supplemented by studies of radula morphology. Our analysis recovered Mitridae as a monophyletic group, whereas the genus Mitra was found to be polyphyletic. Of 42 mitrid species included in the analysis, 37 formed a well‐supported ‘core Mitridae’ consisting of four major clades, three of them consistent with the subfamilies Cylindromitrinae, Imbricariinae, and Mitrinae, and Strigatella paupercula standing out by itself. Basal to the ‘core Mitridae’ are four minor lineages, with the genus Charitodoron recognized as sister group to all other Mitridae. The deep‐water family Pyramimitridae shows a sister relationship to the Mitridae, with high support for a Pyramimitridae + Mitridae clade. Our results recover the monophyly of the Costellariidae, which form a well‐supported clade that also includes Ptychatractidae, Columbariinae, and Volutomitridae, but not Mitridae. Most derived and diverse amongst Costellariidae are species of Vexillum, characterized by a bow‐shaped, multicuspidate rachidian tooth. Several previously unrecognized deep‐water costellariid lineages are revealed. Their members retain some plesiomorphies – in particular a tricuspidate rachidian tooth – that makes them morphologically intermediate between ptychatractids and Vexillum. The taxa of Ptychatractidae included in the analysis are not monophyletic, but form three well‐supported, unrelated groupings, corresponding respectively to Ceratoxancus + Latiromitra, Exilia, and Exiliodea. None of them shows an affinity to Pseudolividae. © 2015 The Linnean Society of London  相似文献   
993.
994.
Insulin resistance (IR) is a metabolic disorder characterized by impaired insulin signaling and cellular glucose uptake. The current paradigm for insulin signaling centers upon the insulin receptor (InsR) and its substrate IRS1; the latter is believed to be the sole conduit for postreceptor signaling. Here we challenge that paradigm and show that GIV/Girdin, a guanidine exchange factor (GEF) for the trimeric G protein Gαi, is another major hierarchical conduit for the metabolic insulin response. By virtue of its ability to directly bind InsR, IRS1, and phosphoinositide 3-kinase, GIV serves as a key hub in the immediate postreceptor level, which coordinately enhances the metabolic insulin response and glucose uptake in myotubes via its GEF function. Site-directed mutagenesis or phosphoinhibition of GIV-GEF by the fatty acid/protein kinase C-theta pathway triggers IR. Insulin sensitizers reverse phosphoinhibition of GIV and reinstate insulin sensitivity. We also provide evidence for such reversible regulation of GIV-GEF in skeletal muscles from patients with IR. Thus GIV is an essential upstream component that couples InsR to G-protein signaling to enhance the metabolic insulin response, and impairment of such coupling triggers IR. We also provide evidence that GIV-GEF serves as therapeutic target for exogenous manipulation of physiological insulin response and reversal of IR in skeletal muscles.  相似文献   
995.
996.
997.
Whiteflies (Hemiptera, Aleyrodidae) are represented by more than 1,500 herbivorous species around the world. Some of them are notorious pests of cassava (Manihot esculenta), a primary food crop in the tropics. Particularly destructive is a complex of Neotropical cassava whiteflies whose distribution remains restricted to their native range. Despite their importance, neither their distribution, nor that of their associated parasitoids, is well documented. This paper therefore reports observational and specimen-based occurrence records of Neotropical cassava whiteflies and their associated parasitoids and hyperparasitoids. The dataset consists of 1,311 distribution records documented by the International Center for Tropical Agriculture (CIAT) between 1975 and 2012. The specimens are held at CIAT’s Arthropod Reference Collection (CIATARC, Cali, Colombia). Eleven species of whiteflies, 14 species of parasitoids and one species of hyperparasitoids are reported. Approximately 66% of the whitefly records belong to Aleurotrachelus socialis and 16% to Bemisia tuberculata. The parasitoids with most records are Encarsia hispida, Amitus macgowni and Encarsia bellottii for Aleurotrachelus socialis; and Encarsia sophia for Bemisia tuberculata. The complete dataset is available in Darwin Core Archive format via the Global Biodiversity Information Facility (GBIF).  相似文献   
998.
The Wnt pathway, which controls crucial steps of the development and differentiation programs, has been proposed to influence lipid storage and homeostasis. In this paper, using an unbiased strategy based on high-content genome-wide RNAi screens that monitored lipid distribution and amounts, we find that Wnt3a regulates cellular cholesterol. We show that Wnt3a stimulates the production of lipid droplets and that this stimulation strictly depends on endocytosed, LDL-derived cholesterol and on functional early and late endosomes. We also show that Wnt signaling itself controls cholesterol endocytosis and flux along the endosomal pathway, which in turn modulates cellular lipid homeostasis. These results underscore the importance of endosome functions for LD formation and reveal a previously unknown regulatory mechanism of the cellular programs controlling lipid storage and endosome transport under the control of Wnt signaling.  相似文献   
999.
1000.

Background

Cattle breeding populations are susceptible to the propagation of recessive diseases. Individual sires generate tens of thousands of progeny via artificial insemination. The frequency of deleterious alleles carried by such sires may increase considerably within few generations. Deleterious alleles manifest themselves often by missing homozygosity resulting from embryonic/fetal, perinatal or juvenile lethality of homozygotes.

Results

A scan for homozygous haplotype deficiency in 25,544 Fleckvieh cattle uncovered four haplotypes affecting reproductive and rearing success. Exploiting whole-genome resequencing data from 263 animals facilitated to pinpoint putatively causal mutations in two of these haplotypes. A mutation causing an evolutionarily unlikely substitution in SUGT1 was perfectly associated with a haplotype compromising insemination success. The mutation was not found in homozygous state in 10,363 animals (P = 1.79 × 10−5) and is thus likely to cause lethality of homozygous embryos. A frameshift mutation in SLC2A2 encoding glucose transporter 2 (GLUT2) compromises calf survival. The mutation leads to premature termination of translation and activates cryptic splice sites resulting in multiple exon variants also with premature translation termination. The affected calves exhibit stunted growth, resembling the phenotypic appearance of Fanconi-Bickel syndrome in humans (OMIM 227810), which is also caused by mutations in SLC2A2.

Conclusions

Exploiting comprehensive genotype and sequence data enabled us to reveal two deleterious alleles in SLC2A2 and SUGT1 that compromise pre- and postnatal survival in homozygous state. Our results provide the basis for genome-assisted approaches to avoiding inadvertent carrier matings and to improving reproductive and rearing success in Fleckvieh cattle.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1483-7) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号