首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8757篇
  免费   712篇
  国内免费   1篇
  9470篇
  2023年   64篇
  2022年   128篇
  2021年   249篇
  2020年   162篇
  2019年   174篇
  2018年   201篇
  2017年   177篇
  2016年   290篇
  2015年   493篇
  2014年   512篇
  2013年   626篇
  2012年   795篇
  2011年   744篇
  2010年   456篇
  2009年   437篇
  2008年   609篇
  2007年   502篇
  2006年   524篇
  2005年   438篇
  2004年   401篇
  2003年   356篇
  2002年   343篇
  2001年   62篇
  2000年   51篇
  1999年   74篇
  1998年   58篇
  1997年   46篇
  1996年   38篇
  1995年   41篇
  1994年   37篇
  1993年   23篇
  1992年   41篇
  1991年   32篇
  1990年   24篇
  1989年   27篇
  1988年   14篇
  1987年   18篇
  1986年   21篇
  1985年   19篇
  1984年   12篇
  1983年   11篇
  1982年   14篇
  1981年   12篇
  1980年   17篇
  1979年   9篇
  1978年   12篇
  1977年   12篇
  1976年   8篇
  1973年   9篇
  1972年   7篇
排序方式: 共有9470条查询结果,搜索用时 15 毫秒
51.
The knowledge of transforming growth factor (TGF)-β receptors has greatly progressed in the recent years. TGF-β receptors type I and II have been implicated in the modulation of cell proliferation, whereas type III (betaglycan) may act as a component presenting TGF-β to its signaling receptors. In addition, four other proteins that bind TGF-β1 or TGF-β2 have been recently identified in some cell lines, three being anchored to the membrane through a glycosylphosphatidylinositol (GPI). Despite this knowledge, the molecular mechanism of signal transduction through the TGF-β receptors remain an enigma. TGF-β family does not signal via any of the classical pathways. As GPI anchors of membrane proteins have been implicated in the transduction of some hormonal effects, we investigated the putative role of GPI in signaling the TGF-β effects on the proliferation of rabbit articular chondrocytes (RAC). We previously showed that TGF-β1 increased DNA replication rate of RAC, with a recruitment of cells in G2/M followed by a subsequent mitosis wave. Here, we find that the factor causes specific GPI hydrolysis, with correlated increase of inositolphosphate glycan (IPG). This effect was specifically inhibited by antibodies that bind TGF-β1. Using [3H]-inositol labeling and Triton X-114 extraction, we demonstrate that a hydrophobic material from the membrane is cleaved by treatment of cell cultures with phosphatidylinositol specific phospholipase C (PI-PLC) or by exposure to TGF-β, supporting that a PI-anchored molecule gives rise to IPG by TGF-β-induced hydrolysis. The biological relevance of this hydrolysis was demonstrated by the enhancing effect of purified IPG on the DNA synthesis rate, which mimicked the TGF-β action. These results demonstrate that IPG could be an early messenger in the cellular signaling that mediates the effect of TGF-β on RAC growth. © 1993 Wiley-Liss, Inc.  相似文献   
52.
Abstract: The effect of Ginkgo biloba extract (EGb 761) treatment (100 mg/kg/day, per os, for 14 days) on electroconvulsive shock (ECS)-induced accumulation of free fatty acids (FFA) and diacylglycerols (DAG) was analyzed in rat cerebral cortex and hippocampus. EGb 761 reduced the FFA pool size by 33% and increased the DAG pool by 36% in the hippocampus. These endogenous lipids were unaffected in cerebral cortex. During the tonic seizure (10 s after ECS) the fast accumulation of FFA, mainly 20:4, was similar in sham- and EGb 761 -treated rats, in both the cerebral cortex and hippocampus. However, further accumulation of free 18:0 and 20:4, observed in the hippocampus of sham-treated rats during clonic seizures (30 s to 2 min after ECS), did not occur in EGb 761-treated animals. The rise in DAG content triggered in the cortex and hippocampus by ECS was delayed by EGb 761 treatment from 10 s to 1 min, when values similar to those in sham animals were attained. Moreover, in the hippocampus the size of the total DAG pool was decreased by 19% during the tonic seizure. At later times, DAG content showed a faster decrease in EGb 761-treated rats. By 2 min levels of all DAG acyl groups decreased to values significantly lower than in sham animals in both cortex and hippocampus. This study shows that EGb 761 treatment affects, with high selectivity, lipid metabolism and lipid-derived second messenger release and removal in the hippocampus, while affecting to a lesser extent the cerebral cortex.  相似文献   
53.
54.
During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2-induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2-induced higher foliage area.  相似文献   
55.
Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.  相似文献   
56.
57.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   
58.

Aim

It is crucial to monitor how the productivity of grasslands varies with its temporal stability for management of these ecosystems. However, identifying the direction of the productivity–stability relationship remains challenging because ecological stability has multiple components that can display neutral, positive or negative covariations. Furthermore, evidence suggests that the direction of the productivity–stability relationship depends on the biotic interactions and abiotic conditions that underlie ecosystem productivity and stability. We decipher the relationships between grassland productivity and two components of its stability in four habitat types with contrasting environments and flora.

Location

France.

Time period

2000–2020.

Major taxa

Grassland plant species.

Methods

We used c. 20,000 vegetation plots spread across French permanent grasslands and remotely sensed vegetation indices to quantify grassland productivity and temporal stability. We decomposed stability into constancy (i.e., temporal invariability) and resistance (i.e., maximum deviation from average) and deciphered the direct and indirect effects of abiotic (namely growing season length and nitrogen input) and biotic (namely plant taxonomic diversity, trait diversity and community-weighted mean traits) factors on productivity–stability relationships using structural equation models.

Results

We found a positive relationship between productivity and constancy and a negative relationship between productivity and resistance in all habitats. Abiotic factors had stronger effects on productivity and stability compared with biotic factors. A longer growing season enhanced grassland productivity and constancy. Nitrogen input had positive and negative effects on grassland productivity and resistance, respectively. Trait values affected the constancy and resistance of grassland more than taxonomic and trait diversity, with effects varying from one habitat to another. Productivity was not related to any biotic factor.

Main conclusions

Our findings reveal how vital it is to consider both the multiple components of stability and the interaction between environment and biodiversity to gain an understanding of the relationships between productivity and stability in real-world ecosystems, which is a crucial step for sustainable grassland management.  相似文献   
59.
A compound library of sixty six linear compounds, eleven representatives of six molecular families: (E)- and (Z)-isomers of alk-4-en-1-ols, alk-4-enals, and methyl alk-4-enoates, was prepared by combinatorial syntheses to allow the creation of a mass spectral database directly usable for their identification in GC/MS analyses. We demonstrate here that compound libraries can be prepared by combinatorial syntheses using long linear synthetic sequences, i. e., eight step in the case of 4-enals. The resulting mixtures of homologues are still perfectly exploitable to deliver the requested information such as clean mass spectra and good gas chromatographic retention indices.  相似文献   
60.

Spinal fixation and fusion are surgical procedures undertaken to restore stability in the spine and restrict painful or degenerative motion. Malpositioning of pedicle screws during these procedures can result in major neurological and vascular damage. Patient-specific surgical guides offer clear benefits, reducing malposition rates by up to 25%. However, they suffer from long lead times and the manufacturing process is dependent on third-party specialists. The development of a standard set of surgical guides may eliminate the issues with the manufacturing process. To evaluate the feasibility of this option, a statistical shape model (SSM) was created and used to analyse the morphological variations of the T4–T6 vertebrae in a population of 90 specimens from the Visible Korean Human dataset (50 females and 40 males). The first three principal components, representing 39.7% of the variance within the population, were analysed. The model showed high variability in the transverse process (~ 4 mm) and spinous process (~ 4 mm) and relatively low variation (< 1 mm) in the vertebral lamina. For a Korean population, a standardised set of surgical guides would likely need to align with the lamina where the variance in the population is lower. It is recommended that this standard set of surgical guides should accommodate pedicle screw diameters of 3.5–6 mm and transverse pedicle screw angles of 3.5°–12.4°.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号