首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5788篇
  免费   588篇
  国内免费   1篇
  2022年   76篇
  2021年   115篇
  2020年   65篇
  2019年   109篇
  2018年   107篇
  2017年   105篇
  2016年   152篇
  2015年   265篇
  2014年   285篇
  2013年   317篇
  2012年   405篇
  2011年   418篇
  2010年   232篇
  2009年   216篇
  2008年   307篇
  2007年   329篇
  2006年   273篇
  2005年   267篇
  2004年   212篇
  2003年   254篇
  2002年   224篇
  2001年   91篇
  2000年   82篇
  1999年   87篇
  1998年   68篇
  1997年   52篇
  1996年   41篇
  1995年   39篇
  1994年   47篇
  1993年   46篇
  1992年   65篇
  1991年   67篇
  1990年   56篇
  1989年   46篇
  1988年   60篇
  1987年   39篇
  1986年   48篇
  1985年   49篇
  1984年   51篇
  1983年   34篇
  1982年   28篇
  1979年   26篇
  1977年   28篇
  1976年   25篇
  1975年   31篇
  1974年   23篇
  1973年   33篇
  1971年   32篇
  1969年   33篇
  1967年   22篇
排序方式: 共有6377条查询结果,搜索用时 31 毫秒
71.
Plastid protein coding regions in plants are generally flanked by 3' inverted repeat (IR) sequences. In a previous work (Stern, D. B., and Gruissem, W. (1987) Cell 51, 1145-1157), we have shown that their role may be in RNA stabilization and as a processing signal that establishes the mature mRNA 3' end. In this report we have investigated the stability and protein interaction of chloroplast mRNA 3' IR-RNA sequences in more detail. Progressive deletions into the 3' IR-RNA sequences for the chloroplast cytochrome b6/f subunit IV (petD) mRNA reduce the stability of the RNA, indicating that the potential to form a stem/loop is a minimum requirement for petD 3' IR-RNA stability in vitro. Specific point mutants also destabilize the processed 3' IR-RNA, suggesting an important role for the primary sequence. Gel mobility shift and UV-cross-linking analysis has shown that 3' IR-RNAs of petD and two other chloroplast mRNAs (rbcL and psbA) interact with proteins in vitro. Comparison of the bound petD 3' IR-RNA proteins with proteins that bind to rbcL and psbA reveals that binding of certain proteins is gene-specific. Also, precursor and processed petD 3' IR-RNAs bind different sets of proteins. A single nucleotide transversion (T----A) near the base of the stem eliminates the binding of a 29-kDa protein to the petD 3' IR-RNA precursor. We discuss the possible role of 3' IR-RNA-protein interactions in plastid mRNA 3' end maturation and differential mRNA stability.  相似文献   
72.
T W Gong  B A Horwitz  J S Stern 《Life sciences》1990,46(14):1037-1044
Central administration of 2-deoxy-D-glucose (2-DG) decreases brown fat thermogenesis. This effect is suggested to be mediated via a central control mechanism. Our study was designed to determine the importance of the sympathetic nervous system in the response of brown fat to intraperitoneal (i.p.) injection of 2-DG. Unilateral denervation of interscapular brown adipose tissue (IBAT) was performed on male Sprague-Dawley rats (300 g body weight). Nine days after surgery, rats were injected i.p. with either saline vehicle (0.9% sodium chloride) or 2-DG (360 mg/kg wt) and then killed one hour later. Sympathetic denervation resulted in 50% decreases in total IBAT protein and in mitochondrial protein recovered. In the denervated lobes, mitochondrial GDP binding (expressed as nmol/mg mitochondrial protein and as total activity recovered) was decreased to 36% and 18%, respectively. Injection of 2-DG did not change mitochondrial protein content in either the innervated or denervated IBAT. In the innervated lobes, 2-DG significantly lowered GDP binding to 55% of that in saline-treated animals, whether expressed per mg mitochondrial protein or as total recovered activity. In contrast, 2-DG did not further decrease GDP binding in the denervated lobes. In conclusion, the effects of i.p. injection of 2-DG on brown fat thermogenesis (as evidenced by GDP binding) appear to be primarily mediated via the sympathetic nervous system.  相似文献   
73.
Spatiotemporal patterns of expression of the cell-surface arabinogalactan-protein epitope defined by monoclonal antibody JIM4 (J.P. Knox et al., 1989, Development 106, 47–56) have been characterized by indirect immunofluorescence during the process of somatic embryogenesis in Daucus carota L. The JIM 4 epitope (J4e) occurred on cells established in culture from hypocotyl explants which appeared to derive, at least in part, from the epidermal cells of the hypocotyl. Cultures maintained in the presence of 2,4-dichlorophenoxyacetic acid developed proembryogenic masses of which only infrequent cells at the surface expressed J4e. Sub-culture at a low cell density and withdrawl of the synthetic auxin resulted in an increase in J4e expression in most surface cells and most abundantly in surface layers of cells at the future shoot end of developing embryos. The transition to heart-shaped embryos occurred concurrently with the expression of J4e by groups of cells beneath the developing cotyledons, at the junction of the future root and shoot. At this stage, J4e was also expressed by a single well-defined layer of cells at the surface of the embryos. Advancement to the mature torpedo stage was accompanied by the expression of the epitope on cells forming two regions of the future stele and of cells associated with the cotyledonary provascular tissue characteristic of the carrot seedling. At this stage there was substantially less expression of the marker antigen by epidermal cells, although infrequent expression by isolated cells of the epidermis was maintained. The correlation of J4e expression with the development and distinction of plant tissue patterns during somatic embryogenesis indicates a role for plasma-membrane arabinogalactan proteins in these processes.Abbreviations AGP arabinogalactan protein - 2,4-D 2,4-di-chlorophenoxyacetic acid - J4e JIM 4 epitope - PEM proembryogenic mass We thank Andrew Davis for photographic assistance and Roger Pennell for useful discussions.  相似文献   
74.
The mathematical model for the penicillin G fed-batch fermentation proposed by Heijnen et al. (1979) is compared with the model of Bajpai & Reuß (1980). Although the general structure of these models is similar, the difference in metabolic assumptions and specific growth and production kinetics results in a completely different behaviour towards product optimization. A detailed analysis of both models reveals some physical and biochemical shortcomings. It is shown that it is impossible to make a reliable estimation of the model parameters, only using experimental data of simple constant glucose feed rate fermentations with low initial substrate amount. However, it is demonstrated that some model parameters might be key factors in concluding whether or not altering the substrate feeding strategy has an important influence on the final amount of product.It is illustrated that feeding strategy optimization studies can be a tool in designing experiments for parameter estimation purposes.  相似文献   
75.
D. D. Hurd  M. Stern    W. M. Saxton 《Genetics》1996,142(1):195-204
To investigate the possibility that kinesin transports vesicles bearing proteins essential for ion channel activity, the effects of kinesin (Khc) and ion channel mutations were compared in Drosophila using established tests. Our results show that Khc mutations produce defects and genetic interactions characteristic of paralytic (para) and maleless (mle) mutations that cause reduced expression or function of the alpha-subunit of voltage-gated sodium channels. Like para and mle mutations, Khc mutations cause temperature-sensitive (TS) paralysis. When combined with para or mle mutations, Khc mutations cause synthetic lethality and a synergistic enhancement of TS-paralysis. Furthermore, Khc mutations suppress Shaker and ether-a-go-go mutations that disrupt potassium channel activity. In light of previous physiological tests that show that Khc mutations inhibit compound action potential propagation in segmental nerves, these data indicate that kinesin activity is required for normal inward sodium currents during neuronal action potentials. Tests for phenotypic similarities and genetic interactions between kinesin and sodium/potassium ATPase mutations suggest that impaired kinesin function does not affect the driving force on sodium ions. We hypothesize that a loss of kinesin function inhibits the anterograde axonal transport of vesicles bearing sodium channels.  相似文献   
76.
S. Richards  T. Hillman    M. Stern 《Genetics》1996,142(4):1215-1223
We describe the identification of a gene called pushover (push), which affects both behavior and synaptic transmission at the neuromuscular junction. Adults carrying either of two mutations in push exhibit sluggishness, uncoordination, a defective escape response, and male sterility. Larvae defective in push exhibit increased release of transmitter at the neuromuscular junction. In particular, the frequency of spontaneous transmitter release and the amount of transmitter release evoked by nerve stimulation are each increased two- to threefold in push mutants at the lowest external [Ca(2+)] tested (0.15 mM). Furthermore, these mutants are more sensitive than wild type to application of the potassium channel-blocking drug quinidine: following qunidine application, push mutants, but not wild-type, display repetitive firing of the motor axon, leading to repetitive muscle postsynaptic potentials. The push gene thus might affect both neuronal excitability and the transmitter release process. Complementation tests and recombinational mapping suggest that the push mutations are allelic to a previously identified P-element-induced mutation, which also causes behavioral abnormalities and male sterility.  相似文献   
77.
Summary 1. Wobbler mice suffer an autosomal recessive mutation producing severe motoneuron degeneration and dense astrogliosis, with increased levels of glial fibrillary acidic protein (GFAP) in the spinal cord and brain stem. They have been considered animal models of amyotrophic lateral sclerosis and infantile spinal muscular atrophy. 2. Using Wobbler mice and normal littermates, we investigated the effects of the membrane-active steroid Lazaroid U-74389F on the number of GFAP-expressing astrocytes and glucocorticoid receptors (GR). Lazaroids are inhibitors of oxygen radical-induced lipid peroxidation, and proved beneficial in cases of CNS injury and ischemia. 3. Four days after pellet implantation of U-74389F into Wobbler mice, hyperplasia and hypertophy of GFAP-expressing astrocytes were apparent in the spinal cord ventral and dorsal horn, areas showing already intense astrogliosis in untreated Wobbler mice. In control mice, U-74389F also produced astrocyte hyperplasia and hypertophy in the dorsal horn and hyperplasia in the ventral-lateral funiculi of the cord. 4. Givenin vivo U-74389F did not change GR in spinal cord of Wobbler or control mice, in line with the concept that it is active in membranes but does not bind to GR. Besides, U-74390F did not compete for [3H]dexamethasone binding when addedin vitro. 5. The results suggest that stimulation of proliferation and size of GFAP-expressing astrocytes by U-74389F may be a novel mechanism of action of this compound. The Wobbler mouse may be a valuable animal model for further pharmacological testing of glucocorticoid and nonglucocorticoid steroids in neurodegenerative diseases.  相似文献   
78.
M D Stern 《Biophysical journal》1996,70(5):2100-2109
The calcium-induced calcium release channel of the cardiac sarcoplasmic reticulum has been reported to inactivate in a novel manner (termed "adaptation"), which permits reactivation by exposure to successively higher concentrations of calcium. I examined the limitations placed by thermodynamics on the possible kinetic mechanisms for such behavior. The mechanism suggested by Gyorke and Fill, in which the affinity of a calcium-binding site decreases during adaptation, is not thermodynamically feasible for a passive system, but requires an external input of free energy. Possible sources of such energy are 1) metabolic energy, which is excluded by the fact that adaptation was observed in isolated channels in the absence of ATP, or 2) coupling of ion permeation to gating, for which there is currently no evidence. I derived a general limit on the thermodynamic feasibility of a sequence of channel activations and adaptations, irrespective of channel kinetics, from the requirement that the free energy must decrease during the spontaneous evolution of the system from the state existing immediately after a step increase in [Ca2+] to the state of maximum open probability that follows. The opening of the channel must involve an increase in free energy, which must be compensated by the free energy released by the incremental binding of calcium. This requirement leads to a complicated system of inequalities, which was simplified and manipulated algebraically into the form of a linear programming problem. Numerical solution of this problem showed that the sequence of adaptations of the SR channel observed by Gyorke and Fill requires the presence of at least 10 calcium-binding sites on the channel if it is to occur in the absence of exogenous sources of free energy. This indicates either that a large number of calcium-binding sites participate in the regulation of the SR calcium release channel, or that the existing data are significantly flawed with respect to the low open probability in the resting state, the importance of "calcium spike" artifacts from flash photolysis, or both.  相似文献   
79.
For either clinical or research purposes, the timing of the nocturnal onset in production of the urinary melatonin metabolite 6-sulfatoxymelatonin (UaMT6s-onset), has been proposed as a reliable and robust marker of circa-dian phase. However, given that most circadian rhythms show cycle-to-cycle variability, the statistical reliability of phase estimates obtained from a single study using UaMT6s-onset remains to be determined. Following 2 weeks of sleep diary and wrist actigraphy, 15 young, healthy good sleepers participated in four UaMT6s sampling sessions spaced 1 day apart. During the sampling sessions subjects remained indoors under low light conditions and hourly urine samples were collected from 19:00 to 02:00 h. Samples were subsequently assayed for UaMT6s using standard radioimmunographic techniques. UaMT6s-onset was determined by the time at which melatonin production exceeded the average of three proceeding trials by 100%. Sleep onset times were derived from sleep diary and actigraphic measures taken before the melatonin collection nights. We found that there was no significant variation between nights in group mean UaMT6s-onset times, and intraindividual variability was small. In addition, UaMT6s-onset times were highly and significantly correlated between nights (grand mean r = 0.804). Our results suggest that within 95% confidence interval limits, individual UaMT6s-onset estimates obtained from a single night UaMT6s-onset study can be used to predict subsequent UaMT6s-onset times within ±97 min. A close temporal relationship was also found between the timing of UaMT6s-onset and sleep onset. Overall, our results suggest that under entrained conditions single-session UaMT6s-onset studies can provide reliable individual UaMT6s-onset phase estimates and that the protocol described in this study is a practical and noninvasive methodology. (Chronobiology International, 13(6), 411-421, 1996)  相似文献   
80.
Glutamatergic transmission in the central nervous system (CNS) is mediated by ionotropic, ligand-gated receptors (iGluRs), and metabotropic receptors (mGluRs). mGluRs are coupled to GTP-binding regulatory proteins (G-proteins) and modulate different second messenger pathways. Multiple effects have been described following their activation; among others, regulation of fast synaptic transmission, changes in synaptic plasticity, and modification of the threshold for seizure generation. Some of the major roles played by the activation of mGluRs might depend on the modulation of high-voltage-activated (HVA) calcium (Ca2+) currents. Some HVA Ca2+ channels (N-, P-, and Q-type channels) are signaling components at most presynaptic active zones. Their mGluR-mediated inhibition reduces synaptic transmission. The interference, by agonists at mGluRs, on L-type channels might affect the repetitive neuronal firing behavior and the integration of complex events at the somatic level. In addition, the mGluR-mediated effects on voltagegated Ca2+ signals have been suggested to strongly influence neurotoxicity. Rather different coupling mechanisms underlie the relation between mGluRs and Ca2+ currents: Together with a fast, membrane-delimited mechanism of action, much slower responses, involving intracellular second messengers, have also been postulated. In the recent past, the relative paucity of selective agonists and antagonists for the different subclasses of mGluRs had hampered the clear definition of the roles of mGluRs in brain function. However, the recent availability of new pharmacological tools is promising to provide a better understanding of the neuronal functions related to different mGluR subtypes. The analysis of the mGluR-mediated modulation of Ca2+ conductances will probably offer new insights into the characterization of synaptic transmission and the development of neuroprotective agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号