首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4243篇
  免费   361篇
  国内免费   1篇
  4605篇
  2023年   21篇
  2022年   68篇
  2021年   108篇
  2020年   57篇
  2019年   103篇
  2018年   97篇
  2017年   95篇
  2016年   145篇
  2015年   241篇
  2014年   251篇
  2013年   281篇
  2012年   359篇
  2011年   364篇
  2010年   202篇
  2009年   190篇
  2008年   248篇
  2007年   275篇
  2006年   227篇
  2005年   217篇
  2004年   162篇
  2003年   198篇
  2002年   176篇
  2001年   44篇
  2000年   19篇
  1999年   33篇
  1998年   40篇
  1997年   31篇
  1996年   25篇
  1995年   20篇
  1994年   25篇
  1993年   30篇
  1992年   21篇
  1991年   18篇
  1990年   11篇
  1989年   12篇
  1988年   18篇
  1987年   14篇
  1986年   15篇
  1985年   21篇
  1984年   10篇
  1983年   9篇
  1978年   7篇
  1976年   7篇
  1975年   8篇
  1973年   9篇
  1972年   6篇
  1971年   12篇
  1970年   5篇
  1969年   5篇
  1967年   5篇
排序方式: 共有4605条查询结果,搜索用时 15 毫秒
191.
A recombinant fusion protein system for the production, oxidation, and purification of short peptides containing a single disulfide bond is described. The peptides are initially expressed in Escherichia coli as a fusion to an engineered mutant of the N-terminal SH2 domain of the intracellular phosphatase, SHP-2. This small protein domain confers several important properties which facilitate the production of disulfide-containing peptides: (i) it is expressed at high levels in E. coli; (ii) it can be purified via a hexahistidine tag and reverse-phase HPLC; (iii) it contains no endogenous cysteine residues, allowing the formation of an intrapeptide disulfide bond while still attached to the fusion partner; (iv) it is highly soluble in native buffers, facilitating the production of very hydrophobic peptides and the direct use of fusion products in biochemical assays; (v) it contains a unique methionine residue at the junction of the peptide and fusion partner to facilitate peptide cleavage by treatment with cyanogen bromide (CNBr). This method is useful for producing peptides, which are otherwise difficult to prepare through traditional chemical synthesis approaches, and this has been demonstrated by preparing a number of hydrophobic disulfide-containing peptides derived from phage-display libraries.  相似文献   
192.
Aberrant control of cyclin-dependent kinases (CDKs) is a central feature of the molecular pathology of cancer. Iterative structure-based design was used to optimize the ATP- competitive inhibition of CDK1 and CDK2 by O(6)-cyclohexylmethylguanines, resulting in O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino)purine. The new inhibitor is 1,000-fold more potent than the parent compound (K(i) values for CDK1 = 9 nM and CDK2 = 6 nM versus 5,000 nM and 12,000 nM, respectively, for O(6)-cyclohexylmethylguanine). The increased potency arises primarily from the formation of two additional hydrogen bonds between the inhibitor and Asp 86 of CDK2, which facilitate optimum hydrophobic packing of the anilino group with the specificity surface of CDK2. Cellular studies with O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino) purine demonstrated inhibition of MCF-7 cell growth and target protein phosphorylation, consistent with CDK1 and CDK2 inhibition. The work represents the first successful iterative synthesis of a potent CDK inhibitor based on the structure of fully activated CDK2-cyclin A. Furthermore, the potency of O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino)purine was both predicted and fully rationalized on the basis of protein-ligand interactions.  相似文献   
193.
We have separated the effect of insulin on glucose distribution/transport, glucose disposal, and endogenous production (EGP) during an intravenous glucose tolerance test (IVGTT) by use of a dual-tracer dilution methodology. Six healthy lean male subjects (age 33 +/- 3 yr, body mass index 22.7 +/- 0.6 kg/m(2)) underwent a 4-h IVGTT (0.3 g/kg glucose enriched with 3-6% D-[U-(13)C]glucose and 5-10% 3-O-methyl-D-glucose) preceded by a 2-h investigation under basal conditions (5 mg/kg of D-[U-(13)C]glucose and 8 mg/kg of 3-O-methyl-D-glucose). A new model described the kinetics of the two glucose tracers and native glucose with the use of a two-compartment structure for glucose and a one-compartment structure for insulin effects. Insulin sensitivities of distribution/transport, disposal, and EGP were similar (11.5 +/- 3.8 vs. 10.4 +/- 3.9 vs. 11.1 +/- 2.7 x 10(-2) ml small middle dot kg(-1) small middle dot min(-1) per mU/l; P = nonsignificant, ANOVA). When expressed in terms of ability to lower glucose concentration, stimulation of disposal and stimulation of distribution/transport accounted each independently for 25 and 30%, respectively, of the overall effect. Suppression of EGP was more effective (P < 0.01, ANOVA) and accounted for 50% of the overall effect. EGP was suppressed by 70% (52-82%) (95% confidence interval relative to basal) within 60 min of the IVGTT; glucose distribution/transport was least responsive to insulin and was maximally activated by 62% (34-96%) above basal at 80 min compared with maximum 279% (116-565%) activation of glucose disposal at 20 min. The deactivation of glucose distribution/transport was slower than that of glucose disposal and EGP (P < 0.02) with half-times of 207 (84-510), 12 (7-22), and 29 (16-54) min, respectively. The minimal-model insulin sensitivity was tightly correlated with and linearly related to sensitivity of EGP (r = 0.96, P < 0.005) and correlated positively but nonsignificantly with distribution/transport sensitivity (r = 0.73, P = 0.10) and disposal sensitivity (r = 0.55, P = 0.26). We conclude that, in healthy subjects during an IVGTT, the two peripheral insulin effects account jointly for approximately one-half of the overall insulin-stimulated glucose lowering, each effect contributing equally. Suppression of EGP matches the effect in the periphery.  相似文献   
194.
195.
196.
Biological sulfide oxidation is a reaction occurring in all three domains of life. One enzyme responsible for this reaction in many bacteria has been identified as sulfide:quinone oxidoreductase (SQR). The enzyme from Rhodobacter capsulatus is a peripherally membrane-bound flavoprotein with a molecular mass of approximately 48 kDa, presumably acting as a homodimer. In this work, SQR from Rb. capsulatus has been modified with an N-terminal His tag and heterologously expressed in and purified from Escherichia coli. Three cysteine residues have been shown to be essential for the reductive half-reaction by site-directed mutagenesis. The catalytic activity has been nearly completely abolished after mutation of each of the cysteines to serine. A decrease in fluorescence on reduction by sulfide as observed for the wild-type enzyme has not been observed for any of the mutated enzymes. Mutation of a conserved valine residue to aspartate within the third flavin-binding domain led to a drastically reduced substrate affinity, for both sulfide and quinone. Two conserved histidine residues have been mutated individually to alanine. Both of the resulting enzymes exhibited a shift in the pH dependence of the SQR reaction. Polysulfide has been identified as a primary reaction product using spectroscopic and chromatographic methods. On the basis of these data, reaction mechanisms for sulfide-dependent reduction and quinone-dependent oxidation of the enzyme and for the formation of polysulfide are proposed.  相似文献   
197.
This study was performed to compare the effects of two hydrophilic bile acids, taurohyodeoxycholic acid (THDCA) and tauroursodeoxycholic acid (TUDCA), on HepG2 cells. Cytotoxicity was evaluated at different times of exposure by incubating cells with increasing concentrations (50-800 micromol/l) of either bile acid, while their cytoprotective effect was tested in comparison with deoxycholic acid (DCA) (350 micromol/l and 750 micromol/l)-induced cytotoxicity. Culture media, harvested at the end of each incubation period, were analyzed to evaluate aspartate transaminase (AST), alanine transaminase and gamma-glutamyltranspeptidase release. In addition, the hemolytic effect of THDCA and TUDCA on human red blood cells was also determined. At 24 h of incubation neither THDCA nor TUDCA was cytotoxic at concentrations up to 200 and 400 micromol/l. At 800 micromol/l both THDCA and TUDCA induced a slight increase in AST release. At this concentration and with time of exposure prolonged up to 72 h, THDCA and TUDCA induced a progressive increase of AST release significantly (P<0.05) higher than that of controls being AST values for THDCA (2.97+/-0.88 time control value (tcv) at 48 h and 4.50+/-1.13 tcv at 72 h) significantly greater than those of TUDCA (1.50+/-0.20 tcv at 48 h and 1.80+/-0.43 tcv at 72 h) (P<0.01). In cytoprotection experiments, the addition of 50 micromol/l THDCA decreased only slightly (-5%) AST release induced by 350 micromol/l DCA, while the addition of 50 micromol/l TUDCA was significantly effective (-23%; P<0.05). Higher doses of THDCA or TUDCA did not reduce toxicity induced by 350 micromol/l DCA, but were much less toxic than an equimolar dose of DCA alone. At the concentration used in this experimental model neither THDCA nor TUDCA was hemolytic; however at a very high concentration (6 mmol/l) both bile acids induced 5-8% hemolysis. We conclude that bile acid molecules with a similar degree of hydrophilicity may show different cytotoxic and cytoprotective properties.  相似文献   
198.
The molecular mechanisms responsible for intracellular pH regulation in the U2-OS osteosarcoma cell line were investigated by loading with 2',7'-bis(2-carboxyethyl)-5(6) carboxyfluorescein ester and manipulation of Cl(-) and Na(+) gradients, both in HEPES- and HCO(3)(-)/CO(2)-buffered media. Both acidification and alkalinisation were poorly sensitive to 4,4'-diisothiocyanate dihydrostilbene-2,2'-disulfonic acid, inhibitor of the anion exchanger, but sensitive to amiloride, inhibitor of the Na(+)/H(+) exchanger. In addition to the amiloride-sensitive Na(+)/H(+) exchanger, another H(+) extruding mechanism was detected in U-2 OS cells, the Na(+)-dependent HCO(3)(-)/Cl(-) exchanger. No significant difference in resting pH(i) and in the rate of acidification or alkalinisation was observed in clones obtained from U-2 OS cells by transfection with the MDR1 gene and overexpressing P-glycoprotein. However, both V(max) and K' values for intracellular [H(+)] of the Na(+)/H(+) exchanger were significantly reduced in MDR1-transfected clones, in the absence and/or presence of drug selection, in comparison to vector-transfected or parental cell line. NHE1, NHE5 and at a lower extent NHE2 mRNA were detected in similar amount in all U2-OS clones. It is concluded that, although overexpression of P-glycoprotein did not impair pH(i) regulation in U-2 OS cells, the kinetic parameters of the Na(+)/H(+) exchanger were altered, suggesting a functional relationship between the two membrane proteins.  相似文献   
199.
Florida queen conch stocks once supported a significant fishery, but overfishing prompted the state of Florida to institute a harvest moratorium in 1985. Despite the closure of the fishery, the queen conch population has been slow to recover. One method used in the efforts to restore the Florida conch population has been to release hatchery-reared juvenile conch into the wild; however, suboptimal predator avoidance responses and lighter shell weights relative to their wild counterparts have been implicated in the high mortality rates of released hatchery juveniles. We conducted a series of experiments in which hatchery-reared juvenile conch were exposed to a predator, the spiny lobster (Panulirus argus), to determine whether they could develop behavioral and morphological characteristics that would improve survival. Experiments were conducted in tanks with a calcareous sand substrate to simulate a natural environment. Conditioned conch were exposed to caged lobsters while conch in the control tanks were exposed to empty cages. Conditioned conch moved significantly less and buried themselves more frequently than the naive control conch. Morphometric data indicated that the conditioned conch grew at a significantly slower rate than the naive conch, but the shell weights of the two groups were not significantly different. This implies that the conditioned conch had thicker or denser shells than the control group. As a result, the conditioned conch had significantly higher survival than naive conch in a subsequent predation experiment in which a lobster was allowed to roam free in each tank for 24 hours. In the future, the conditioning protocols documented in this study will be used to increase the survival of hatchery-reared conch in the wild.  相似文献   
200.
Circulating human lymphocytes contain a transmembrane oxidoreductase (PMOR) capable of reducing dichlorophenol indophenol (DCIP) by endogenous reductants, presumably NADH. Membranes from lymphocytes obtained from buffy coats contain a NADH DCIP reductase having a K(m) of about 1 microM and almost insensible to dicoumarol. The PMOR of lymphocytes from insulin-dependent diabetic patients is higher than that from age-matched controls and, in addition, has a dicoumarol-sensitive component, lacking in most controls, presumably due to membrane association of DT-diaphorase. The increase of PMOR in diabetes is likely due to overexpression of the enzyme, in view of the very low K(m) for NADH indicating that, in intact cells, the enzyme is practically saturated with the reductant substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号