首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4206篇
  免费   366篇
  国内免费   1篇
  2023年   19篇
  2022年   52篇
  2021年   106篇
  2020年   58篇
  2019年   101篇
  2018年   96篇
  2017年   93篇
  2016年   144篇
  2015年   243篇
  2014年   253篇
  2013年   279篇
  2012年   358篇
  2011年   358篇
  2010年   203篇
  2009年   189篇
  2008年   247篇
  2007年   270篇
  2006年   222篇
  2005年   214篇
  2004年   159篇
  2003年   196篇
  2002年   175篇
  2001年   43篇
  2000年   18篇
  1999年   33篇
  1998年   42篇
  1997年   31篇
  1996年   24篇
  1995年   19篇
  1994年   25篇
  1993年   30篇
  1992年   25篇
  1991年   21篇
  1990年   15篇
  1989年   15篇
  1988年   20篇
  1987年   13篇
  1986年   15篇
  1985年   21篇
  1984年   10篇
  1983年   9篇
  1979年   6篇
  1978年   9篇
  1976年   7篇
  1975年   8篇
  1973年   10篇
  1972年   8篇
  1971年   11篇
  1969年   5篇
  1967年   5篇
排序方式: 共有4573条查询结果,搜索用时 15 毫秒
161.
The small molecule SI113 is an inhibitor of the kinase activity of SGK1, a key biological regulator acting on the PI3K/mTOR signal transduction pathway. Several studies demonstrate that this compound is able to strongly restrain cancer growth in vitro and in vivo, alone or in associative antineoplastic treatments, being able to elicit an autophagic response, either cytotoxic or cytoprotective. To elucidate more exhaustively the molecular mechanisms targeted by SI113, we performed activity-based protein profiling (ABPP) proteomic analysis using a kinase enrichment procedure. This technique allowed the identification via mass spectrometry of novel targets of this compound, most of them involved in functions concerning cell motility and cytoskeletal architecture. Using a glioblastoma multiforme, hepatocarcinoma and colorectal carcinoma cell line, we recognized an inhibitory effect of SI113 on cell migration, invading, and epithelial-to-mesenchymal transition. In addition, these cancer cells, when exposed to this compound, showed a remarkable subversion of the cytoskeletal architecture characterized by F-actin destabilization, phospho-FAK delocalization, and tubulin depolimerization. These results were definitely concordant in attributing to SI113 a key role in hindering cancer cell malignancy and, due to its negligible in vivo toxicity, can sustain performing a Phase I clinical trial to employ this drug in associative cancer therapy.  相似文献   
162.
163.
Plant Molecular Biology - Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for...  相似文献   
164.
Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1’s role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.  相似文献   
165.
We have studied type I and type II adrenal cortical steroid receptors in the anterior (AL), intermediate (IL) and posterior (PL) lobes of the pituitary and in the hippocampus of ovariectomized-adrenalectomized female rats and in castrated-adrenalectomized male animals, with or without oestrogen treatment. Using [3H]dexamethasone as ligand and conditions suitable for determination of its binding to type I and type II receptors, we found that 4 or 15 days of oestrogen reduced type I receptors in AL by 50-60% without changes in IL, PL or hippocampus, or in type II sites in any of the four neuroendocrine tissues studied. This down-regulatory effect was seen only in female rats and no change was found for males. The reduction in type I sites in AL in oestrogenized female rats was confirmed by labelling type I sites with the synthetic antimineralocorticoid [3H]ZK 91587. Saturation analysis with [3H]ZK 91587 demonstrated that the reduction was due to a reduction in Bmax without change in Kd. We conclude that: (a) type I receptors in the anterior pituitary are under oestrogenic control; (b) there is a sex difference in the response to oestrogen of AL type I sites; and (c) this demonstration may be useful in determining the role of type I receptors in neuroendocrine regulation of the anterior pituitary by hormones derived from the adrenal cortex, and the participation of sex hormones in this process.  相似文献   
166.
Agricultural expansion encroaches on tropical forests and primates in such landscapes frequently incorporate crops into their diet. Understanding the nutritional drivers behind crop-foraging can help inform conservation efforts to improve human-primate coexistence. This study builds on existing knowledge of primate diets in anthropogenic landscapes by estimating the macronutrient content of 24 wild and 11 cultivated foods (90.5% of food intake) consumed by chimpanzees (Pan troglodytes verus) at Bossou, Guinea, West Africa. We also compared the macronutrient composition of Bossou crops to published macronutrient measures of crops from Bulindi, Uganda, East Africa. The composition of wild fruits, leaves, and pith were consistent with previous reports for primate diets. Cultivated fruits were higher in carbohydrates and lower in insoluble fiber than wild fruits, while wild fruits were higher in protein. Macronutrient content of cultivated pith fell within the ranges of consumed wild pith. Oil palm food parts were relatively rich in carbohydrates, protein, lipids, and/or fermentable fiber, adding support for the nutritional importance of the oil palm for West African chimpanzees. We found no differences in the composition of cultivated fruits between Bossou and Bulindi, suggesting that macronutrient content alone does not explain differences in crop selection. Our results build on the current understanding of chimpanzee feeding ecology within forest-agricultural mosaics and provide additional support for the assumption that crops offer primates energetic benefits over wild foods.  相似文献   
167.
The influence of the O(2) and CO(2) concentration and the temperature on the O(2) uptake rate of cool-stored intact pears and pear cell protoplasts in suspension was compared. Protocols to isolate pear cell protoplasts from pear tissue and two methods to measure protoplast respiration have been developed. Modified Michaelis-Menten kinetics were applied to describe the effect of the O(2) and the CO(2) concentration on the O(2) uptake rate and temperature dependence was analysed with an Arrhenius equation. Both systems were described with a non-competitive type of CO(2) inhibition. Due to the inclusion of gas diffusion properties, the Michaelis-Menten constant for intact pears (2.5 mM) was significantly larger than the one for protoplasts in suspension (3 microM), which was in turn larger than the Michaelis-Menten constant obtained in mitochondrial respiration measurements described in the literature. It was calculated that only 3.6% of the total diffusion effect absorbed in the Michaelis-Menten constant for intact pears, could be attributed to intracellular gas diffusion. The number of cells per volume of tissue was counted microscopically to establish a relationship between the pear cell protoplast and intact pear O(2) uptake rate. A remarkable similarity was observed: values of 61.8 nmol kg(-1) s(-1) for protoplasts and 87.1 nmol kg(-1) s(-1) for intact pears were obtained. Also, the inhibitory effect of CO(2) on the respiration rate was almost identical for protoplasts and intact pears, suggesting that protoplast suspensions are useful for the study of other aspects of the respiration metabolism.  相似文献   
168.
A cold-regulated gene (cor tmc-ap3) coding for a putative chloroplastic amino acid selective channel protein was isolated from cold-treated barley leaves combining the differential display and the 5-RACE techniques. Cor tmc-ap3 is expressed at low level under normal growing temperature, and its expression is strongly enhanced after cold treatment. A positive correlation between the expression of cor tmc-ap3 and frost tolerance was found both among barley cultivars and among cereal species. The COR TMC-AP3 protein was expressed in vitro, purified and used to raise a polyclonal antibody. Western analysis showed that the cor tmc-ap3 gene product is localized to the chloroplastic outer envelope fraction, supporting its putative function. The frost-resistant winter cultivar Onice accumulated COR TMC-AP3 more rapidly and at a higher level than the frost-susceptible spring cultivar Gitane. After 28 days of cold acclimation the winter cultivar had about 2-fold more protein than the spring genotype. All these results suggest that an increased amount of a chloroplastic amino acid selective channel protein could be required for cold acclimation in cereals. Hypotheses about the role of COR TMC-AP3 during the hardening process are discussed.  相似文献   
169.
Based on evidence that thiol and tyrosine reagents inhibit some amino acid transporters, we tested the hypothesis that NO- and O2- -derived free radicals would impair nutrient uptake by the human placenta. Syncytiotrophoblast microvillous plasma membrane vesicles (MVM) and placental villous fragments were exposed to the drug SIN-1 in the presence or absence of superoxide dismutase (SOD) and hemoglobin (Hb). The uptake of [3H]arginine, [3H]taurine, and [3H]leucine; [14C]MeAIB; and 22Na was studied in MVM, whereas the uptake of [3H]taurine was examined in villous fragments. Nitrotyrosine formation was assessed by Western blotting and quantified by ELISA. In MVM, SIN-1 caused an inhibition of [3H]arginine, [3H]taurine, and [14C]MeAIB uptake but had no significant effect on equilibrium [3H]leucine uptake. These effects were prevented by SOD or Hb, implying that both NO and O2- radicals were essential. In contrast, 22Na+ uptake was significantly increased, and this effect was prevented by SOD. In villous fragments, SIN-1 impaired Na+-dependent [3H]taurine uptake, with no effect on Na+-independent uptake. Increased nitrotyrosine formation was observed in MVM after SIN-1 treatment. Endogenous NO- and O2- -derived free radicals may alter human placental nutrient transfer in vivo, with implications for fetal growth.  相似文献   
170.
An increase in CO2/H+ is a major stimulus for increased ventilation and is sensed by specialized brain stem neurons called central chemosensitive neurons. These neurons appear to be spread among numerous brain stem regions, and neurons from different regions have different levels of chemosensitivity. Early studies implicated changes of pH as playing a role in chemosensitive signaling, most likely by inhibiting a K+ channel, depolarizing chemosensitive neurons, and thereby increasing their firing rate. Considerable progress has been made over the past decade in understanding the cellular mechanisms of chemosensitive signaling using reduced preparations. Recent evidence has pointed to an important role of changes of intracellular pH in the response of central chemosensitive neurons to increased CO2/H+ levels. The signaling mechanisms for chemosensitivity may also involve changes of extracellular pH, intracellular Ca2+, gap junctions, oxidative stress, glial cells, bicarbonate, CO2, and neurotransmitters. The normal target for these signals is generally believed to be a K+ channel, although it is likely that many K+ channels as well as Ca2+ channels are involved as targets of chemosensitive signals. The results of studies of cellular signaling in central chemosensitive neurons are compared with results in other CO2- and/or H+-sensitive cells, including peripheral chemoreceptors (carotid body glomus cells), invertebrate central chemoreceptors, avian intrapulmonary chemoreceptors, acid-sensitive taste receptor cells on the tongue, and pain-sensitive nociceptors. A multiple factors model is proposed for central chemosensitive neurons in which multiple signals that affect multiple ion channel targets result in the final neuronal response to changes in CO2/H+. hypercapnia; brain stem; ventilation; peripheral chemoreceptor; glia; gap junction; glomus; channel; calcium; potassium; carbonic anhydrase; taste receptor; nociception  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号