首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4184篇
  免费   360篇
  国内免费   1篇
  4545篇
  2023年   21篇
  2022年   69篇
  2021年   107篇
  2020年   57篇
  2019年   101篇
  2018年   95篇
  2017年   93篇
  2016年   143篇
  2015年   240篇
  2014年   252篇
  2013年   278篇
  2012年   356篇
  2011年   355篇
  2010年   202篇
  2009年   190篇
  2008年   245篇
  2007年   270篇
  2006年   222篇
  2005年   214篇
  2004年   160篇
  2003年   196篇
  2002年   173篇
  2001年   40篇
  2000年   18篇
  1999年   33篇
  1998年   40篇
  1997年   31篇
  1996年   23篇
  1995年   19篇
  1994年   25篇
  1993年   30篇
  1992年   21篇
  1991年   18篇
  1990年   11篇
  1989年   12篇
  1988年   18篇
  1987年   12篇
  1986年   15篇
  1985年   21篇
  1984年   10篇
  1983年   9篇
  1978年   7篇
  1977年   5篇
  1976年   7篇
  1975年   8篇
  1973年   8篇
  1972年   6篇
  1971年   11篇
  1970年   5篇
  1967年   5篇
排序方式: 共有4545条查询结果,搜索用时 15 毫秒
91.
92.
Gut microbiome research has bloomed over the past 15 years. We have learnt a lot about the complex microbial communities that colonize our intestine. Promising avenues of research and microbiome-based applications are being implemented, with the goal of sustaining host health and applying personalized disease management strategies. Despite this exciting outlook, many fundamental questions about enteric microbial ecosystems remain to be answered. Organizational measures will also need to be taken to optimize the outcome of discoveries happening at an extremely rapid pace. This article highlights our own view of the field and perspectives for the next 15 years.  相似文献   
93.
The FDA has published guidelines by which to carry out and interpret in vitro induction studies using hepatocytes but do researchers in pharmaceutical companies actually follow these to the letter? In a survey of 30 participants in the pharmaceutical industry, 19 questions were posed regarding the species investigated, methodologies and interpretations of the data. Also addressed was the in-house decision making processes as a result of in vitro induction data. The survey showed that, although the basic methods were similar, no two researchers carried out and interpreted induction assays in exactly the same way. No single method was superior but all included enzyme activities as the major end point. Hepatocytes from animal species were used to confirm animal in vivo data but only human hepatocytes were used to predict human induction responses. If a compound was found to be positive in an in vitro induction assay, few would halt the development of the compound. The majority would consider other properties of the compound (bioavailability, clearance and therapeutic concentrations) and follow the FDA recommendation to conduct clinical drug-drug interaction studies. Overall, the results from this survey indicate that there is no standard pharmaceutical industry method or evaluation criterion by which in vitro assays are carried out. Rather than adhering to the FDA guidelines, some adapt methods and interpretation according to their own experience and need (whether screening or lead optimisation). There was general consensus that studies using human hepatocyte cultures currently provide the best indication of the in vivo induction potential of NCEs. In addition, the assessment of in vitro induction data from the literature suggest that the two-fold induction threshold and the percent of positive control criteria may not be the best methods to accurately assess the in vivo induction potential of a drug. Although the two-fold induction criterion is now obsolete, more predictive models for determining the clinical induction potential are needed. Alternative models are proposed and discussed herein.  相似文献   
94.
Haines N  Stewart BA 《Genetics》2007,175(2):671-679
Adult Drosophila mutant for the glycosyltransferase beta1,4-N-acetlygalactosaminyltransferase-A (beta4GalNAcTA) display an abnormal locomotion phenotype, indicating a role for this enzyme, and the glycan structures that it generates, in the neuromuscular system. To investigate the functional role of this enzyme in more detail, we turned to the accessible larval neuromuscular system and report here that larvae mutant for beta4GalNAcTA display distinct nerve and muscle phenotypes. Mutant larvae exhibit abnormal backward crawling, reductions in nerve terminal bouton number, decreased spontaneous transmitter-release frequency, and short, wide muscles. This muscle shape change appears to result from hypercontraction since the individual sarcomeres are shorter in mutant muscles. Analysis of muscle calcium signals showed altered calcium handling in the mutant, suggesting a mechanism by which hypercontraction could occur. All of these phenotypes can be rescued by a transgene carrying the beta4GalNAcTA genomic region. Tissue-specific expression, using the Gal4-UAS system, reveals that neural expression rescues the mutant crawling phenotype, while muscle expression rescues the muscle defect. Tissue-specific expression did not appear to rescue the decrease in neuromuscular junction bouton number, suggesting that this defect arises from cooperation between nerve and muscle. Altogether, these results suggest that beta4GalNAcTA has at least three distinct functional roles.  相似文献   
95.
96.
Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown. While biological solutions, such as biological control agents and pheromones, have previously had relatively minor roles in pest management, biotechnology has opened the door to numerous new approaches for controlling insect pests. In this review, we look at how advances in synthetic biology and biotechnology are providing new options for pest control. We discuss emerging technologies for engineering resistant crops and insect populations and examine advances in biomanufacturing that are enabling the production of new products for pest control.  相似文献   
97.
Plant Molecular Biology - Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for...  相似文献   
98.
Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1’s role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.  相似文献   
99.
Physiological trade-offs mediated by limiting energy, resources or time constrain the simultaneous expression of major functions and can lead to the evolution of temporal separation between demanding activities. In birds, plumage renewal is a demanding activity, which accomplishes fundamental functions, such as allowing thermal insulation, aerodynamics and socio-sexual signaling. Feather renewal is a very expensive and disabling process, and molt is often partitioned from breeding and migration. However, trade-offs between feather renewal and breeding have been only sparsely studied. In barn swallows (Hirundo rustica) breeding in Italy and undergoing molt during wintering in sub-Saharan Africa, we studied this trade-off by removing a tail feather from a large sample of individuals and analyzing growth bar width, reflecting feather growth rate, and length of the growing replacement feather in relation to the stage in the breeding cycle at removal and clutch size. Growth bar width of females and length of the growing replacement feather of both sexes were smaller when the original feather had been removed after clutch initiation. Importantly, in females both growth bar width and replacement feather length were negatively predicted by clutch size, and more strongly so for large clutches and when feather removal occurred immediately after clutch completion. Hence, we found strong, coherent evidence for a trade-off between reproduction, and laying effort in particular, and the ability to generate new feathers. These results support the hypothesis that the derived condition of molting during wintering in long-distance migrants is maintained by the costs of overlapping breeding and molt.  相似文献   
100.
The CA2 region of the hippocampus has distinctive properties and inputs and may be linked with the pathology of specific psychiatric and neurological disorders. It is, therefore, important to understand CA2 circuitry and its involvement in the circuitry of the hippocampus. Properties of CA2 basket cells have been reported. However, other classes of CA2 interneurones with cell bodies located in stratum pyramidale remained to be described. In this study, the unusual axonal arbors of a novel subclass of dendrite-preferring CA2 interneurones whose somata are located in the pyramidal cell layer was revealed following intracellular recordings and biocytin labeling. One to four apical dendrites emerged from the soma, branched in stratum radiatum (SR) forming a tuft, but rarely penetrated stratum lacunosum-moleculare (SLM). One or two basal dendrites branched close to the soma, the branches extended through stratum oriens (SO) and often reached the alveus. Unlike CA2 bistratified cells, the axons of these cells arborized almost exclusively in SR with few, if any, branches extending to stratum pyramidale (SP), SO, or SLM. These interneurones again, unlike bistratified cells, were immunonegative for parvalbumin and cholecystokinin. Electrophysiologically, they were similar to some CA2 basket and bistratified cells in that they presented a "sag" in response to hyperpolarizing current injections and displayed spike frequency adaptation. They targeted the apical dendrites of neighboring CA2 pyramidal cells and received inputs from them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号