首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4472篇
  免费   372篇
  国内免费   1篇
  2023年   20篇
  2022年   52篇
  2021年   106篇
  2020年   58篇
  2019年   103篇
  2018年   97篇
  2017年   97篇
  2016年   149篇
  2015年   252篇
  2014年   263篇
  2013年   294篇
  2012年   374篇
  2011年   377篇
  2010年   216篇
  2009年   202篇
  2008年   259篇
  2007年   282篇
  2006年   234篇
  2005年   229篇
  2004年   176篇
  2003年   208篇
  2002年   181篇
  2001年   57篇
  2000年   25篇
  1999年   36篇
  1998年   45篇
  1997年   35篇
  1996年   25篇
  1995年   21篇
  1994年   29篇
  1993年   32篇
  1992年   26篇
  1991年   24篇
  1990年   18篇
  1989年   13篇
  1988年   19篇
  1987年   16篇
  1986年   16篇
  1985年   25篇
  1984年   13篇
  1983年   11篇
  1979年   9篇
  1978年   9篇
  1976年   8篇
  1975年   8篇
  1973年   11篇
  1972年   6篇
  1971年   14篇
  1970年   7篇
  1967年   6篇
排序方式: 共有4845条查询结果,搜索用时 15 毫秒
71.
Biofuel provides a globally significant opportunity to reduce fossil fuel dependence; however, its sustainability can only be meaningfully explored for individual cases. It depends on multiple considerations including: life cycle greenhouse gas emissions, air quality impacts, food versus fuel trade‐offs, biodiversity impacts of land use change and socio‐economic impacts of energy transitions. One solution that may address many of these issues is local production of biofuel on non‐agricultural land. Urban areas drive global change, for example, they are responsible for 70% of global energy use, but are largely ignored in their resource production potential; however, underused urban greenspaces could be utilized for biofuel production near the point of consumption. This could avoid food versus fuel land conflicts in agricultural land and long‐distance transport costs, provide ecosystem service benefits to urban dwellers and increase the sustainability and resilience of cities and towns. Here, we use a Geographic Information System to identify urban greenspaces suitable for biofuel production, using exclusion criteria, in 10 UK cities. We then model production potential of three different biofuels: Miscanthus grass, short rotation coppice (SRC) willow and SRC poplar, within the greenspaces identified and extrapolate up to a UK‐scale. We demonstrate that approximately 10% of urban greenspace (3% of built‐up land) is potentially suitable for biofuel production. We estimate the potential of this to meet energy demand through heat generation, electricity and combined heat and power (CHP) operations. Our findings show that, if fully utilized, urban biofuel production could meet nearly a fifth of demand for biomass in CHP systems in the United Kingdom's climate compatible energy scenarios by 2030, with potentially similar implications for other comparable countries and regions.  相似文献   
72.
73.
74.
Molecular and Cellular Biochemistry - Intravascular hemolysis, a major manifestation of sickle cell disease (SCD) and other diseases, incurs the release of hemoglobin and heme from red blood cells,...  相似文献   
75.
Hypermobile Ehlers-Danlos syndrome (hEDS), mainly characterized by generalized joint hypermobility and its complications, minor skin changes, and apparently segregating with an autosomal dominant pattern, is still without a known molecular basis. Hence, its diagnosis is only clinical based on a strict set of criteria defined in the revised EDS nosology. Moreover, the hEDS phenotypic spectrum is wide-ranging and comprises multiple associated signs and symptoms shared with other heritable or acquired connective tissue disorders and chronic inflammatory diseases. In this complex scenario, we previously demonstrated that hEDS patients' skin fibroblasts show phenotypic features of myofibroblasts, widespread extracellular matrix (ECM) disarray, perturbation of ECM-cell contacts, and dysregulated expression of genes involved in connective tissue architecture and related to inflammatory and pain responses. Herein, the cellular proteome of 6 hEDS dermal myofibroblasts was compared to that of 12 control fibroblasts to deepen the knowledge on mechanisms involved in the disease pathogenesis. Qualitative and quantitative differences were assessed based on top-down and bottom-up approaches and some differentially expressed proteins were proofed by biochemical analyses. Proteomics disclosed the differential expression of proteins principally implicated in cytoskeleton organization, energy metabolism and redox balance, proteostasis, and intracellular trafficking. Our findings offer a comprehensive view of dysregulated protein networks and related pathways likely associated with the hEDS pathophysiology. The present results can be regarded as a starting point for future in-depth investigations aimed to decipher the functional impact of potential bioactive molecules for the development of targeted management and therapies.  相似文献   
76.

Understanding the timescales that shape spatial genetic structure is pivotal to ascertain the impact of habitat fragmentation on the genetic diversity and reproductive viability of long-lived plant populations. Combining genetic and ecological information with current and past fragmentation conditions allows the identification of the main drivers important in shaping population structure and declines in reproduction, which is crucial for informing conservation strategies. Using historic aerial photographs, we defined the past fragmentation conditions for the shrub Conospermum undulatum, a species now completely embedded in an urban area. We explored the impact of current and past conditions on its genetic layout and assessed the effects of genetic and environmental factors on its reproduction. The historically high structural connectivity was evident in the genetics of the species. Despite the current intense fragmentation, we found similar levels of genetic diversity across populations and a weak spatial genetic structure. Historical connectivity was negatively associated with genetic differentiation among populations and positively related to within-population genetic diversity. Variation partitioning of reproductive performance explained?~?66% of the variance, showing significant influences for genetic (9%), environmental (15%), and combined (42%) fractions. Our study highlights the importance of considering the historical habitat dynamics when investigating fragmentation consequences in long-lived plants. A detailed characterization of fragmentation from 1953 has shown how low levels of genetic fixation are due to extensive gene flow through the non-fragmented landscape. Moreover, knowledge of the relationships between genetic and environmental variation and reproduction can help to implement effective conservation strategies, particularly in highly dynamic landscapes.

  相似文献   
77.
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号