首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   31篇
  292篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   8篇
  2018年   4篇
  2017年   10篇
  2016年   14篇
  2015年   22篇
  2014年   17篇
  2013年   20篇
  2012年   24篇
  2011年   22篇
  2010年   13篇
  2009年   11篇
  2008年   10篇
  2007年   18篇
  2006年   12篇
  2005年   13篇
  2004年   11篇
  2003年   7篇
  2002年   15篇
  2001年   2篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
41.
With the access to draft genome sequence assemblies and whole‐genome resequencing data from population samples, molecular ecology studies will be able to take truly genome‐wide approaches. This now applies to an avian model system in ecological and evolutionary research: Old World flycatchers of the genus Ficedula, for which we recently obtained a 1.1 Gb collared flycatcher genome assembly and identified 13 million single‐nucleotide polymorphism (SNP)s in population resequencing of this species and its sister species, pied flycatcher. Here, we developed a custom 50K Illumina iSelect flycatcher SNP array with markers covering 30 autosomes and the Z chromosome. Using a number of selection criteria for inclusion in the array, both genotyping success rate and polymorphism information content (mean marker heterozygosity = 0.41) were high. We used the array to assess linkage disequilibrium (LD) and hybridization in flycatchers. Linkage disequilibrium declined quickly to the background level at an average distance of 17 kb, but the extent of LD varied markedly within the genome and was more than 10‐fold higher in ‘genomic islands’ of differentiation than in the rest of the genome. Genetic ancestry analysis identified 33 F1 hybrids but no later‐generation hybrids from sympatric populations of collared flycatchers and pied flycatchers, contradicting earlier reports of backcrosses identified from much fewer number of markers. With an estimated divergence time as recently as <1 Ma, this suggests strong selection against F1 hybrids and unusually rapid evolution of reproductive incompatibility in an avian system.  相似文献   
42.
Many proteins undergoe self‐assembly into fibrillar structures known as amyloid fibrils. During the self‐assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self‐assembly process. Moreover, we report how this methodology can be used to prepare non‐covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase, the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized in order to prepare films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 249–259, 2016.  相似文献   
43.
The size of the vertebrate brain is shaped by a variety of selective forces. Although larger brains (correcting for body size) are thought to confer fitness advantages, energetic limitations of this costly organ may lead to trade-offs, for example as recently suggested between sexual traits and neural tissue. Here, we examine the patterns of selection on male and female brain size in pinnipeds, a group where the strength of sexual selection differs markedly among species and between the sexes. Relative brain size was negatively associated with the intensity of sexual selection in males but not females. However, analyses of the rates of body and brain size evolution showed that this apparent trade-off between sexual selection and brain mass is driven by selection for increasing body mass rather than by an actual reduction in male brain size. Our results suggest that sexual selection has important effects on the allometric relationships of neural development.  相似文献   
44.
Apical serrations of the hymenopteran ovipositor have been widely postulated to originally constitute adaptations for cutting through hard substrates. Simplifications of the ovipositor tip have occurred in several ichneumonid wasp genera associated with spiders. Despite such reduction in Clistopyga (Hymenoptera, Ichneumonidae), the ovipositor still possesses some apical serrations. Through the first detailed study, we believe, on the behaviour of an ovipositing Clistopyga species, we show that it can alter its ovipositor for different purposes and that the primary function of the apical serrations is clinging to its spider host as the spider attempts to escape. Intriguingly, we also discover a hitherto undocumented adaptation for the hymenopteran ovipositor. The female wasp seals openings in the silken spider nest by using its ovipositor on the silk in a highly sophisticated way that is comparable to how humans entangle wool by needle felting. By studying the ovipositor morphology through a scanning electron microscope, we elucidate how this works, and we hypothesize that by closing the nest the female wasp protects its developing kin.  相似文献   
45.
Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280–400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated.  相似文献   
46.
When individuals receive different returns from their reproductive investment dependent on mate quality, they are expected to invest more when breeding with higher quality mates. A number of studies over the past decade have shown that females may alter their reproductive effort depending on the quality/attractiveness of their mate. However, to date, despite extensive work on parental investment, such a differential allocation has not been demonstrated in fish. Indeed, so far only two studies from any taxon have suggested that females alter the quality of individual offspring according to the quality/attractiveness of their mate. The banggai cardinal fish is an obligate paternal mouth brooder where females lay few large eggs. It has previously been shown that male size determines clutch weight irrespective of female size in this species. In this study, I investigated whether females perform more courtship displays towards larger males and whether females allocate their reproductive effort depending on the size of their mate by experimentally assigning females to either large or small males. I found that females displayed more towards larger males, thereby suggesting a female preference for larger males. Further, females produced heavier eggs and heavier clutches but not more eggs when paired with large males. My experiments show that females in this species adjust their offspring weight and, thus, presumably offspring quality according to the size of their mate.  相似文献   
47.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film.Anna Karlgren and Jenny Carlsson contributed equally to this study.Corresponding authors: Anna Karlgren at Anna.Karlgren@ebc.uu.se and Jens F. Sundström at Jens.Sundstrom@vbsg.slu.se  相似文献   
48.
There is remarkable diversity in brain anatomy among vertebrates and evidence is accumulating that predatory interactions are crucially important for this diversity. To test this hypothesis, we collected female guppies (Poecilia reticulata) from 16 wild populations and related their brain anatomy to several aspects of predation pressure in this ecosystem, such as the biomass of the four major predators of guppies (one prawn and three fish species), and predator diversity (number of predatory fish species in each site). We found that populations from localities with higher prawn biomass had relatively larger telencephalon size as well as larger brains. Optic tectum size was positively associated with one of the fish predator’s biomass and with overall predator diversity. However, both olfactory bulb and hypothalamus size were negatively associated with the biomass of another of the fish predators. Hence, while fish predator occurrence is associated with variation in brain anatomy, prawn occurrence is associated with variation in brain size. Our results suggest that cognitive challenges posed by local differences in predator communities may lead to changes in prey brain anatomy in the wild.  相似文献   
49.
A life cycle assessment of a Swedish short‐rotation coppice willow bioenergy system generating electricity and heat was performed to investigate how the energy efficiency and time‐dependent climate impact were affected when the feedstock was converted into bio‐oil and char before generating electricity and heat, compared with being combusted directly. The study also investigated how the climate impact was affected when part of the char was applied to soil as biochar to act as a carbon sequestration agent and potential soil improver. The energy efficiencies were calculated separately for electricity and heat as the energy ratios between the amount of energy service delivered by the system compared to the amount of external energy inputs used in each scenario after having allocated the primary energy related to the inputs between the two energy services. The energy in the feedstock was not included in the external energy inputs. Direct combustion had the highest energy efficiency. It had energy ratios of 10 and 36 for electricity and heat, respectively. The least energy‐efficient scenario was the pyrolysis scenario where biochar was applied to soils. It had energy ratios of 4 and 12 for electricity and heat, respectively. The results showed that pyrolysis with carbon sequestration might be an option to counteract the current trend in global warming. The pyrolysis system with soil application of the biochar removed the largest amount of from the atmosphere. However, compared with the direct combustion scenario, the climate change mitigation potential depended on the energy system to which the bioenergy system delivered its energy services. A system expansion showed that direct combustion had the highest climate change mitigation potential when coal or natural gas were used as external energy sources to compensate for the lower energy efficiency of the pyrolysis scenario.  相似文献   
50.
We studied long-term trends and the yearly variation in mean spring passage time in 36 passerine bird species trapped at Ottenby Bird Observatory in south-eastern Sweden. Between the years 1952–2002, data were available for 22–45 years depending on species. Most long-distance migrant species passed progressively earlier over the study period (range: 2.5 days earlier to 0.7 days later per 10 years, with an average of 0.9 days earlier per 10 years). The annual variation in timing of migration in most species, regardless of migration distance, correlated negatively with the winter index of the North Atlantic Oscillation (NAO), a large-scale climate phenomenon influencing the climate in the North Atlantic region. Birds passed earlier after mild and humid winters, corresponding to the high phase of the NAO. This corroborates the pattern found at a nearby migration site with a comparable dataset (Helgoland, 600 km WSW of Ottenby). However, short/medium-distance migrant species at Ottenby, in contrast to the situation at Helgoland, have shown no general trend of earlier passage in recent years. This was probably a consequence of the shorter study period at Ottenby, which included only the last 22–32 years (41 years at Helgoland), when the NAO showed no significant trend. At the species-specific level, the long-term trends in passage time were similar at the two sites, and there was some congruence to the extent that a given species was affected by NAO. Long-distance migrants wintering south and south-east of the breeding grounds showed some of the strongest changes in long-term trends (passing progressively earlier) at Ottenby, and for some of these species passage time varied negatively with NAO. Obviously, and contrary to previous suggestions, variations in NAO also influence birds migrating through eastern Europe, although the direct or indirect mechanisms through which this is achieved are unknown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号