首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   5篇
  142篇
  2021年   2篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   17篇
  2011年   18篇
  2010年   6篇
  2009年   2篇
  2008年   16篇
  2007年   11篇
  2006年   7篇
  2005年   14篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1970年   1篇
排序方式: 共有142条查询结果,搜索用时 0 毫秒
61.
62.
We report that the multidomain protein POSH (plenty of SH3s) acts as a scaffold for the JNK pathway of neuronal death. This pathway consists of a sequential cascade involving activated Rac1/Cdc42, mixed-lineage kinases (MLKs), MAP kinase kinases (MKKs) 4 and 7, c-Jun N-terminal kinases (JNKs) and c-Jun, and is required for neuronal death induced by various means including nerve growth factor (NGF) deprivation. In addition to binding GTP-Rac1 as described previously, we find that POSH binds MLKs both in vivo and in vitro, and complexes with MKKs 4 and 7 and with JNKs. POSH overexpression promotes apoptotic neuronal death and this is suppressed by dominant-negative forms of MLKs, MKK4/7 and c-Jun, and by an MLK inhibitor. Moreover, a POSH antisense oligonucleotide and a POSH small interfering RNA (siRNA) suppress c-Jun phosphorylation and neuronal apoptosis induced by NGF withdrawal. Thus, POSH appears to function as a scaffold in a multiprotein complex that links activated Rac1 and downstream elements of the JNK apoptotic cascade.  相似文献   
63.
In vitro production of the meroterpene bakuchiol by Psoralea drupacea Bge (Fabaceae) has been studied using aseptically-grown plants, callus cultures of different origin, cell suspensions and transgenic hairy root cultures. The effect of phytohormones and methyl jasmonate on bakuchiol production was also investigated. Bakuchiol was not detected in cell suspensions or hairy root preparations of P. drupacea. In contrast, aerial parts of P. drupacea grown in vitro were found to accumulate up to 11% dry weight of bakuchiol and can therefore be regarded as a potentially useful source of this antimicrobial compound.  相似文献   
64.
Triblock copolymers of ethylene oxide (EO) and propylene oxide (PO) of EO(n/2)PO(m)EO(n/2) type (Pluronics) demonstrate a variety of biological effects that are mainly due to their interaction with cell membranes. Previously, we have shown that Pluronics can bind to artificial lipid membranes and enhance accumulation of the anti-tumor drug doxorubicin (DOX) inside the pH-gradient liposomes and transmembrane migration (flip-flop) of NBD-labeled phosphatidylethanolamine in the liposomes composed from one component-lecithin. Here, we describe the effects caused by insertion of other natural lipids in lecithin liposomes and the significance of the lipid composition for interaction of Pluronic L61 with the membrane. We used binary liposomes consisting of lecithin and one of the following lipids: cholesterol, phosphatidylethanolamine, ganglioside GM1, sphingomyelin, cardiolipin or phosphatidic acid. The influence of the additives on (1) membrane microviscosity; (2) binding of Pluronic L61; (3) the copolymer effect on lipid flip-flop and membrane permeability towards DOX was studied. The results showed that insertion of sphingomyelin and cardiolipin did not influence membrane microviscosity and effects of Pluronic on the membrane permeability. Addition of phosphatidic acid led to a decrease in microviscosity of the bilayer and provoked its destabilization by the copolymer. On the contrary, cholesterol increased microviscosity of the membrane and decreased binding of Pluronic and its capacity to enhance flip-flop and DOX accumulation. Analogous tendencies were revealed upon incorporation of egg phosphatidylethanolamine or bovine brain ganglioside GM1. Thus, a reverse dependence between the microviscosity of membranes and their sensitivity to Pluronic effects was demonstrated. The described data may be relevant to mechanisms of Pluronic L61 interaction with normal and tumor cells.  相似文献   
65.
Mitochondria benefit their host cells by generating ATP, detoxifying oxygen, maintaining cellular redox potential, and detoxifying reactive oxygen species and xenobiotics. These beneficial roles are in stark contrast to mitochondrial participation in both necrotic and apoptotic degenerative pathways. However, cellular stresses do not always result in deleterious mitochondrial changes. Decreases in the calcium sensitivity of the permeability transition may be initial mitochondrial responses to stress that act to preserve mitochondrial function and prolong normal functioning of the host cell.  相似文献   
66.
Shoot and leaf segments of a non-regenerable Medicago sativa L. genotype were cocultivated with the shooty mutant of Agrobacterium tumefaciens carrying the pGV 2206 plasmid. Transformed callus lines were selected and regenerated on the hormone free B5 medium. Southern blot analysis demonstrated integration of T-DNA in to the genome of the regenerated plants.Transgenic plants resistant to kanamycin were obtained by electroporation of Medicago borealis protoplasts with the pGA 472 plasmid DNA.Abbreviations 2.4 D 2.4 dichlorophenoxyacetic acid - BAP 6-benzyladenine - T-DNA transferred DNA into plants from Ti-plasmid of A. tumefaciens  相似文献   
67.
68.
A sequential pathway (the JNK pathway) that includes activation of Rac1/Cdc42, mixed lineage kinases, MAP kinase kinases 4 and 7, and JNKs plays a required role in many paradigms of apoptotic cell death. However, the means by which this pathway is assembled and directed toward apoptotic death has been unclear. Here, we report that propagation of the apoptotic JNK pathway requires the cooperative interaction of two molecular scaffolds, POSH and JIPs. POSH (plenty of SH3s) is a multidomain GTP-Rac1-interacting protein that binds and promotes activation of mixed lineage kinases. JIPs are reported to bind MAP kinase kinases 4/7 and JNKs. We find that POSH and JIPs directly associate with one another to form a multiprotein complex, PJAC (POSH-JIP apoptotic complex), that includes all of the known kinase components of the pathway. Our observations indicate that this complex is required for JNK activation and cell death in response to apoptotic stimuli.  相似文献   
69.
We report that Sh3rf2, a homologue of the pro-apoptotic scaffold POSH (Plenty of SH3s), acts as an anti-apoptotic regulator for the c-Jun N-terminal kinase (JNK) pathway. siRNA-mediated knockdown of Sh3rf2 promotes apoptosis of neuronal PC12 cells, cultured cortical neurons, and C6 glioma cells. This death appears to result from activation of JNK signaling. Loss of Sh3rf2 triggers activation of JNK and its target c-Jun. Also, apoptosis promoted by Sh3rf2 knockdown is inhibited by dominant-negative c-Jun as well as by a JNK inhibitor. Investigation of the mechanism by which Sh3rf2 regulates cell survival implicates POSH, a scaffold required for activation of pro-apoptotic JNK/c-Jun signaling. In cells lacking POSH, Sh3rf2 knockdown is unable to activate JNK. We further find that Sh3rf2 binds POSH to reduce its levels by a mechanism that requires the RING domains of both proteins and that appears to involve proteasomal POSH degradation. Conversely, knockdown of Sh3rf2 promotes the stabilization of POSH protein and activation of JNK signaling. Finally, we show that endogenous Sh3rf2 protein rapidly decreases following several different apoptotic stimuli and that knockdown of Sh3rf2 activates the pro-apoptotic JNK pathway in neuronal cells. These findings support a model in which Sh3rf2 promotes proteasomal degradation of pro-apoptotic POSH in healthy cells and in which apoptotic stimuli lead to rapid loss of Sh3rf2 expression, and consequently to stabilization of POSH and JNK activation and cell death. On the basis of these observations, we propose the alternative name POSHER (POSH-eliminating RING protein) for the Sh3rf2 protein.  相似文献   
70.
In Vitro Cellular & Developmental Biology - Plant - The present study reports an efficient in vitro plant regeneration system for amphidiploid (2n = 42) spelt wheat (Triticum spelta...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号